
Abstract - Recent investigations into intelligent lane tracking
have yielded several systems that can find lane locations in
still images with high efficacy.  More recently, the LOIS
(Likelihood of Image Shape) algorithm has been shown to
robustly find lane markers even in the presence of
shadowing, occlusion, and varied lighting conditions.  This
paper uses the LOIS algorithm in order to track the lanes
through a sequence of images, and provide a warning if a
lane crossing is imminent.
Specifically, the vehicle’s offset with respect to the right and
left lane markings (as determined by LOIS) are examined as
a function of time. A Kalman filter is used to predict the
future values of these offset parameters, based on past
observations. If the vehicle’s position as determined LOIS is
within one meter of either the left or the right lane marking,
and if the vehicle’s path as predicted by the Kalman filter
will lead to it being within 0.8 meters of either lane markings
in less than one second, then a lane crossing warning is
generated.

I. INTRODUCTION

Over the last decade a great deal of research has been
performed in the area of vision-based detection of lane
boundaries. This technology has a number of potential
applications. One high-value potential application is
drowsy driver warning. There are over three million
traffic accidents each year in the U.S. in which a vehicle
leaves the roadway without colliding with another
vehicle. These accidents result in 13,000 deaths annually,
and are responsible for 16.5% of all traffic delays. It is
estimated that up to 53% of these accidents could be
avoided if vehicles had lane departure warning systems
[1]. Another potential application is to enhance the
accuracy of tracking the leading vehicle for intelligent
cruise control. Loss of correct tracking when the leading
vehicle enters a curve is a significant cause of problems
for ICC systems, and methods for detecting curves based
on estimates of the motion of either the leading vehicle or
one’s own vehicle have limitations [2]. A longer-term
application is to provide autonomous lateral vehicle
control [3]. Vision-based techniques for autonomous
lateral control have the advantage of using existing visual
cues in the road environment, compared to infrastructure-
based methods that require modification of the road.

A distinction can be made between the problems of lane
detection and lane tracking. Lane detection involves
determining the location of the lane boundaries in a single
image without strong prior knowledge regarding the lane
position. Lane tracking involves determining the location

of the lane boundaries in a sequence of consecutive
images, using information about the lane location in
previous images in the sequence to constrain the probable
lane location in the current image.  Some systems use
different algorithms for lane detection and tracking. The
VaMoRs system, for instance, uses the algorithm
described in [4] to perform the initial detection of the
road, then switches to the algorithm described in [5] to
perform frame-to-frame tracking of the lane location. The
approach taken in the work described in this paper is to
use the same basic image processing for lane detection
and tracking, the LOIS Lane Detector.

LOIS (for Likelihood Of Image Shape) uses a deformable
template approach.  A parametric family of shapes
describes the set of all possible ways that the lane edges
could appear in the image. A function is defined whose
value is proportional to how well a particular set of lane
shape parameters matches the pixel data in a specified
image. Lane detection is performed by finding the lane
shape parameters that maximize the function for the
current image.

The LOIS algorithm is used to track lanes from frame-to-
frame. LOIS uses a weaker prior model of lane location
when performing initial lane detection, then uses
information from the previous frame to constrain the
probable lane location when performing lane tracking.
LOIS’ output includes the curvature, orientation, and
offsets of the current lane. The lane offsets are used in
conjunction with a Kalman filter to predict the position of
the vehicle, with respect to the lanes, in future frames. If a
lane crossing is deemed imminent within one second,
then a warning is generated.  Several experimental results
are presented in this paper to illustrate the effectiveness of
this warning strategy.

Previous articles on LOIS [6][7][8] have focused on
locating the lane boundaries in single images in situations
where the vehicle remained near the center of the lane. A
more recent work [9] deals with tracking the lane
boundaries through sequences of images, including
sequences where the vehicle performs maneuvers such as
lane changes and excursions which take it far away from
the lane center. This paper focuses on using the LOIS
lane tracker to estimate the imminent lane crossings.

The rest of the paper is organized as follows. In section II,
we present a brief review of some related work, followed
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by a description of LOIS in section III. Section IV
contains details on lane tracking using LOIS. The strategy
for warning drivers about imminent lane crossing is
described in section V along with supporting
experimental results.  The paper concludes with a
discussion of some relevant issues in section VI.

II. RELATED WORK

The first-generation of lane detection systems were all
edge-based. They relied on thresholding the image
intensity to detect potential lane edges, followed by a
perceptual grouping of the edge points to detect the lane
markers of interest. Also, often times the lanes to be
detected were assumed to be straight. See [10][11][12]
and the references therein. The problem with thresholding
the intensity is that, in many road scenes, it isn’t possible
to select a threshold which eliminates the detection of
noise edges without also eliminating the detection of true
lane edge points. Therefore, these first generation lane
detection systems suffered when the images contained
extraneous edges due to vehicles, on-off ramps, puddles,
cracks, shadows, oil stains, and other imperfections in the
road surface.  The same deficiency also applied when the
lanes were of low contrast, broken, occluded, or totally
absent.1

The second-generation of systems sought to overcome
this problem by directly working with the image intensity
array, as opposed to separately detected edge points, and
using a global model of lane shape. For example,
ARCADE [12] uses global road shape constraints derived
from an explicit model of how the features defining a
road appear in the image plane. A simple one-
dimensional edge detection is followed by a least median
squares technique for determining the curvature and
orientation of the road. Individual lane markers are then
directly determined by a segmentation of the row-
averaged image intensity values. ARCADE, unlike its
predecessors, does not require any perceptual grouping of
the extracted edge points into individual lane edges. The
RALPH system [3] is another example of a second
generation lane detection system. Like ARCADE, it too
uses global road shape constraints. The crux of RALPH is
a matching technique that adaptively adjusts and aligns a
template to the averaged scanline intensity profile in
order to determine the lane’s curvature and lateral offsets.
There are several other such second generation systems;
the reader is referred to [13] for a description of those.
Many of these have been subject to several hours of
testing, which involved the processing of extremely large
and varied data sets, and it suffices to say that the second
generation lane detection systems perform significantly
better in comparison to the first generation ones.

The success and reliability of such second-generation lane
detection/tracking systems has prompted several
researchers to implement vision-based lane departure
warning and lateral control systems. Foremost among
these is RALPH [3], which was described in the previous
paragraph. AURORA [1] uses a side-looking camera to
determine the vehicle’s offset from the lane, and generate
                                                       
1 As would be the case when the road has no lane markers, but only
pavement edges.

a warning if a lane crossing is imminent within a second
and a half. The estimate of time-to-lane-crossing (TLC) is
based on a linear extrapolation of the current and half-
second prior values of the offset. The CAPC system [16]
uses a single forward-looking camera along with vehicle
motion and steering angle sensors to predict imminent
lane departures. A Kalman filter is used to predict the
vehicle’s future path, based on past observations. Another
such system is described in [17]. Of course, the
effectiveness and reliability of these warning/control
systems are contingent on the performance of the
underlying lane detection algorithms.

III. THE LOIS ALGORITHM

The deformable template approach to object detection has
three components:
• A parametric family of shapes which describes all

possible ways that the object can appear in the
image;

• A likelihood function which measures how well a
particular hypothesized object shape matches a given
image; and

• A method for finding the shape parameters that
maximizes the likelihood function for the image
being examined.

Each of these components is described in detail below.

A. Prior Model of Lane Shapes

Assume that the lane edges are circular arcs on a flat
ground plane. For small to moderate curvatures, a circular
arc with curvature k can be closely approximated by a
parabola of the form

                 bymykx ++= *2**5.0 (1)
The derivation of the class of corresponding curves in the
image plane is given for the case of an untilted camera,
but it can be shown that the same family of curves results
when the camera is tilted. Assuming perspective
projection, a pixel (r, c) in the image plane projects onto
the point (x, y) on the ground plane according to the
equations
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where H is the camera height, rf is the height of a pixel on
the focal plane divided by the focal length, and cf is the
width of a pixel on the focal plane divided by the focal
length. Substituting (2) and (3) into (1) and performing
some simple algebraic manipulation results in the image
plane curve
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or, combining the ground plane and camera calibration
parameters together,

             vprbrkc +′+′= */  (5)
In the case of a tilted camera, the same family of curves
results if the image coordinate system is defined so that
row 0 is the horizon row. For left and right lane edges
defined by concentric arcs the approximation is made that
the arcs have equal curvature and equal tangential



orientation where they intersect the X axis, so k′ and vp
will be equal for the left and right lane edges. As a result,
the lane shape in an image can be defined by the four

parameters vp and b' ,b' ,k' , RIGHTLEFT .

B. The likelihood function

The intuition underlying the likelihood function used by
LOIS is that there should be a brightness gradient near
every point along the lane edges. The larger the
magnitude of that gradient, the more likely it is to
correspond to a lane edge. Also, the closer the orientation
of that gradient is to perpendicular to the lane edge, the
more likely it is to correspond to a lane edge. This
likelihood function operates on raw image gradient
information without the need for explicit thresholding to
select edge points. As a result, weak edges with consistent
gradient orientations can support the correct lane shape
hypothesis, while strong edges with inconsistent
orientations (such as those resulting from shadows) do
not distract LOIS from finding the correct lane shape.

More formally, define the penalty function

     ( ) )*1/(1, 2xxf αα += (6)

whereα determines how fast ),( xf α  decreases as x

increases. Then the contribution of each pixel to the
likelihood value is equal to
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where, pixelDist is the distance in columns from the

closest lane edge (left or right), and LaneEdgeTgt is the
tangential orientation of the closest lane edge calculated
for the pixel’s row. The calculation of the likelihood
function clips the portions of the image more than a
specified distance from the hypothesized lane edges in
order to increase the speed of the function. Also, lookup
tables are used for cos(⋅) and the penalty function f(⋅) in
order to further increase the speed of the likelihood
function calculation.

C. MAP Estimation and the Metropolis Algorithm

The prior and likelihood models are combined in a
Bayesian framework, resulting in the lane detection
problem being posed as finding the Maximum A
Posteriori estimate of the lane shape parameters,
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In general, the function in eq. (8) is not a concave
function, and often contains several local maxima.  As a
result, local optimization techniques such as gradient
descent are not appropriate.  The current implementation
of LOIS uses the Metropolis algorithm with a geometric
annealing schedule [15] to perform this maximization
(see [6][7][8] for a more detailed description).

All the results shown in this paper were generated by
running the Metropolis algorithm for 40 iterations.  In
each iteration a small step away from the current value is
tested for each of the lane shape parameters.  The initial
temperature is 10.0, and the final temperature is 0.01.

D. Experimental Results Using LOIS

Figure 1 shows examples LOIS’ lane detection ability
under a variety of road and environmental conditions.

  

  

  
Figure 1.  Examples of LOIS detecting lanes

LOIS has been tested on a very large number of images.
Shown in Figure 2 are the cumulative results of the center
of the lane as determined by LOIS. The data set used to
generate this result consists of approximately 1,400
images acquired in sequence as an U.S. Army HMMWV
was being driven for over 45 miles of regular Michigan
highways (the route is also shown in Figure 2. The
standard deviation in offset with respect to the center of
the lane (a combination of errors due to both LOIS and
the driver) was determined to be close to 13cms.

Figure 2. Lane detection using LOIS on a large data set



IV. LOIS-BASED LANE TRACKER

Clearly, roadway images taken in succession and spaced
closely together (at a 10Hz rate, as for example in [14])
have very similar lane locations from frame to frame.
This section describes how this temporal similarity can be
exploited when looking for lanes in individual images.

The lane shape parameters vp and b' ,b' ,k' , RIGHTLEFT of

the previous frame are used as a starting point of the
Metropolis algorithm for the succeeding image. Our
specific implementation of the Metropolis algorithm,
remembers the likelihood values corresponding to points
that are in the “neighborhood” of the current lane shape
parameters. So, if the previous lane shape parameters
correspond to a point “near” the peak of the current
likelihood, then using the previous values of

vp and b' ,b' ,k' , RIGHTLEFT as a starting point also results

in a speed-up in the Metropolis algorithm’s rate of
convergence to the peak of the current likelihood. The
sequence of images shown in Figure 3, represent a
vehicle keeping within its lane. In each individual still
image, the location of the lane in the previous frame has
been used as a starting point for lane searches in the
current frame. Such a strategy seems to achieve the
intended purpose.

  

  

  

  

  

  
Figure 3.  Lane tracking when there is no lane change

A common malady among most lane tracking systems is
finding lanes during a sequence in which a vehicle is
making a lane change, as it represents a situation where
temporal correlation is detrimental.  This problem is
further compounded by the fact that the a priori
contraints on lane shapes that are commonly used become
invalid during this maneuver - e.g., that the right lane is to
the right of the vehicle or that the left lane is within a
certain distance of the vehicle. The LOIS-based lane
tracking system overcomes this problem as shown in
Figure 4 – see [9] for details.

  

  

  

  

  

  
Figure 4.  Lane tracking through a lane change maneuver

One danger of using past lane estimates to influence the
current lane finding procedure is that bad estimates in the
past may confine the current search to a poor solution
space.  Without proper consideration, the lane tracker
could lose the lanes in one frame and never be able to
recapture them in subsequent frames.  This, however, is
not a concern in the LOIS-based lane tracker, because the
past lane shape estimate is used only as an initial guess of
the current lane locations, without any additional
constraints as shown in Figure 5 – again, see [9] for
details.

  
Figure 5. Recovering from a “bad” lane shape estimate



V. LANE DEPARTURE WARNING

The lane departure warning system described in this
paper is based on a Kalman filtering acting on the left and
right lane offset parameters output by LOIS. The filter
derivation proceeds as follows:

Let 
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to the left lane on the image plane. The vehicle dynamics
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are the state and observation equations for the offset of
the vehicle with respect to the left lane. The parameter ∆
in eq. (9) denotes the look-ahead time increment. Based
on these state and observation equations, a linear
minimum mean squared error (i.e., Kalman) estimate of
SL(k+∆) based on all previous values of )(kb' LEFT is

obtained. Similarly, for SR(k+∆).

If SL,R(k+∆) is less than a predetermined threshold and
concurrently )(kb' RIGHT LEFT,  is less than another

predetermined threshold, a lane departure warning is
generated.2 Similarly for the right lane.

The resolution of the acquired image has a definite effect
on the accuracy of this warning. At low image resolution,
the quantization in the values of )(kb' LEFT  and

)(kb' RIGHT  become very coarse. As a result, the Kalman
filter based prediction of imminent lane departures
becomes unreliable. To overcome this difficulty LOIS’

LEFTb'  and RIGHTb'  outputs are averaged over a short
window before using them in the Kalman filter.

The lane departure warning strategy adopted in this paper
is susceptible to false alarms immediately following a
gradual lane change maneuver. This is due to the fact that
the vehicle remains very close to the lane for short
periods upon crossing the lane. Such false alarms are
eliminated by automatically turning the warning off
immediately following  lane change detection.

Figures 6 through 8 present examples of the lane
departure warning system presented in this paper. In all of
the figures, the warning is indicated by a small rectangle
in the upper left or right corner of the image, depending
on which lane the driver is nearing. Figure 6 shows the
effectiveness of this warning during a lane change
maneuver.  Figure 7 shows the effectiveness of this

                                                       
2  For the results in this paper, ∆=15, which represents a one-second

look ahead time. The threshold values for SL,R(k+∆)=0.4 and

)(kb' RIGHT LEFT, =0.5, correspond to approximately .8 meters and 1

meter from the center of the vehicle in the ground plane, respectively.

The test vehicle used measures approximately 1.75 meters wide.

warning during night time driving. Figure 8 shows the
effectiveness of this warning during drowsy driving.

  

  

  

  

  
Figure 6. Departure warning during a lane change

  

  

  

  

  
Figure 7. Departure warning at night time



  

  

  

  

  

  

  

  

  

  
Figure 8. A drowsy driver poorly handling the lane.

VI. CONCLUDING REMARKS

The LOIS-based lane tracker provides a very reliable
algorithm for the development of a lane departure
warning system. The lane departure warning system
developed here, namely one that incorporates the
estimates of lateral offset with a Kalman Filter for future
offset prediction, has been shown to work under a variety
of driving scenarios. In the future, such a system could be

used not only to warn a driver of an impending lane
crossing, but eventually to take control of the vehicle.
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