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1 Introduction 
The Michigan Offroad Sensor Fusing 

Experimental Testbed (MOSlfEZ] is an autonomous 
vehicle designed to navigate an "own terrain which 
includes obstacles. lanes. and other traditional road- 
side obstructions. In order to gather data about the 
world around it, MOSFET is equipped with several 
heterogeneous sensors. These sensors include one 
forward-looking camera used for obstacle detection 
and lane tracking; two side-looking cameras used for 
lane sensing: and a bank of sonar sensors used to detect 
physical obstacles (see Figure 1). 

Figure 1: MOSFET 

MOSFEl's intelligence consists of three steps. 
First, it extracts information from each individual 
sensor. Next. it accomplishes a systematic fusion of 
the information extracted from the indwidual sensors. 
Finally, it augments this fused information by the use 
of temporal analysis, which keeps track of previous 
obstacle mformation and updates that information in 
accordance with the movement of the vehicle. 
MOSFET navigates by keeping within the lanes while 
simultaneously avoiding obstacles and other road-side 
obstructions. 

The crux of this paper is in steps 2 and 3, namely, 
the process of building a world model for MOSFET, 
based on the information gathered from the individual 
sensors: and augmenting this model through the use of 
temporal data. These 2 steps are accomplished in three 
stages: 

Deformable Template Stage - MOSFETs position 
and orientation. with respect to the left and right lane 
markers, are obtained by using STARLITE, a straight- 
edge detecting deformable template algorithm that uses 
a signal-to-noise ratio (SNR) matching criteria (see 
111). The input to STARLITE consists of the left and 
right side-looking camera images. STARLITE's output 
is subsequently used to detect lane boundaries in the 
forward-looking camera image. Using position and 
orientation to fix three parameters of a parabolic 
deformable template, the lane's curvature is estimated 
by a Hough transform-like edge accumulation 
procedure. 

Correlation Stage - The ultrasound sensors are used to 
detect physical obstacles. As a separate step, a color 
segmentation algorithm called OLSON is also used to 
distinguish obstacles by analyzing the forward-lookmg 
camera image. By correlating the two obstacle 
extraction results, together with the lane information 
from the deformable template stage, the exact position 
and extent of obstacles that are relevant to MOSFETs 
navigability are determined The lanes and the 
obstacles detected are all laid out in a grid of 
MOSFETs immedate world. Each grid element 
represents a certain distance and angular position from 
MOSFET. Associated with each element is a value 
proportional to its "relative obstacleness." The relative 
obstacleness is measured by a weighted combination of 
the lane, ultrasound, and color algorithm outputs. Grid 
elements that are outside of the detected lanes are 
deemed "sex7ere" dxtacles. 

Augmentation Stage - MOSFETs current obstacle 
grid of the world is combined with its previous grids. 
A decayed sum of all the previous "relative 
obstacleness" values plus the new one constitutes the 
accumulated obstacleness for each square grid. A 
cleaning procedure to get rid of strayholated single 
square obstacles is performed 
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The ideas contained in this paper are not all new. 
A fusion of forward-loolung visual images and 
ultrasound data for mobile platforms is given in [2]. A 
similar fusion algorithm can also be found in [3]. The 
accumulated gnd algorithm for ultrasound and laser 
range data was presented in [4,5]. Another temporal 
analysis algorithm for mobile platforms is given in [6]. 
Suffices to say, a considerable amount of previous 
work has been reported on the both heterogeneous 
sensor fusion and temporal information analysis. The 
contribution of this paper is a novel combination and 
adaptation of such previously reported ideas along with 
the use of some new deformable template-based edge 
detection algorithms and information theory based 
color segmentation algorithms. 

2 The Deformable Template Stage 

A4OSFET employs a modified version of the 
STARLITE algorithm for side-looking camera lane 
detection. STARLITE utilizes a deformable template 
model to dcscribe the shape of an ideal lane. As Figure 
2 shows, the deformation template's four parameters 
consist of the intensity of the background (hLvement). 
the intensity of the lane (plme). the width of the lane 
marker (a), and the position of the lane marker (p). 

Figure 2: The STARLITE deformable template model 

STARLITE scans one row of the image and then 
employs a modified SNR-based matched filter criteria 
to match the deformable ideal template lane marker to 
the intensity profile of that scan row: 

(plane - Ppavement)' (1) 
2 SNR= 

6 lane + (J pavement 

As was mentioned earlier, the deformable template 
stage of t h s  work uses a modified version of 
STARLITE. We process three scan lines instead of just 
one in order to determine both offset and orientation of 
the lane with respect to the vehicle. This modfied 
algorithm is applied to the side-looking camera images 
in order to find MOSFETs position and orientation 
with respect to the left and right lanes. Figure 3 

presents examples of STARLITE locating lanes in 
typical outdoor images. 

Figure 3: Lane finding using a modified version of 

marked with a vertical bar to indicate their position 
STARLITE. Lanes are found in three scanlines and are 

Once the lane position and orientation have been 
identified firom the side-looking cameras. this 
information is then fed to another deformable template 
algorithm that analyzes the forward-looking camera 
image. Potential lane pixels in the forward-loolung 
canma inlage are first identified by using a color 
segmentation algorithm called OLSON. OLSOh' 
assumes that training samples of typical lane markers 
and backgroiunds are available, Using the mean and 
covariance of the training samples as prior knowledge, 
OLSON tranisforms a given color image into a gray- 
tone image. 'This transformation is effected in such a 
way that the contrast between the lane pixels and 
background pixels in the gray-tone image is 
maximize4 in a Fisher information sense. Potential 
lane pixels are then identified by using a simple 
(histogram-based) thresholding techruque. Figure 4 
shows a couple of examples of OLSOMs output. 

Figure 4: OLSON output images for different color 
lane markers 

23 1 



Notice that OLSON works equally well for both white 
and vellow lane markers. 

Lanes in the front-looking camera are modeled as 
parabolas: 

(2) 
2 r = k c  + m c + b  

where k denotes the curvature, m the orientation and b 
the offset of the lanes. Since the lanes are assumed to 
be parallel, they share the same k and m values, and the 
left and right lanes are distinguished by their dffering 
hL and hR values. STARLITE determines the m, bL and 
hR values. Therefore, findmg the lanes in the front- 
looking camera is equivalent to fitting two parabolas 
with the Same unknown k to the pixels identified by 
OLSON in the front-looking camera image as being 
potential lanes. The fitting procedure is accomplished 
by a I-D maximization over the k space of a Hough- 
like edge aggregate measure: 

k* = arg max Lane(r, c)  (3) 
k r,c 

where, Lane(r,c) denotes OLSON'S output - a binary 
value denoting whether or not (r,c) is a potential lane 
pixel, and the summation is over only those (r,c)'s that 
satisfy eq. (2). 

Figure 5 shows three examples of this combined 

Figure 5: (L to R) Left Camera Image, Main Camera 
Image, Right Camera Image, Ground Plane Worldmap 

Notice that the lane information is accurate even in 
the presence of obstacles obscuring the lane markers 
andlor when one of the lanes is invisible in the 
Ioomard-looking camera image. 

3 Correlation Stage 

The main camera image is processed again to 
determine the location of potential obstacles in front of 
the vehicle. This obstacle location is also 

accomplished by OLSON (trained on samples of ty;ical 
obstacles and backgrounds). Figure 6 shows three 
examples of OLSON segmenting a typical main camera 
image in order to determine the location of potential 
obstacles: 

Figure 6: (I, to R) Main camera image, OLSON 
binarized image 

Notice that OLSON locates obstacles of varying colors 
equally well. 

The ultrasound sensors are then used to locate 
physical obstacles. Since the ultrasonic sensors return 
only the range of an object as information; the angular 
position of the obstacle is calculated using the trivial 
sonar model shown in Figure 7. In this model, the 
range 

Figure 7: Trivial Sonar Model 

information is used along with the known sonar 
detection cone to assume an obstacle's angular location 
as the center of the conic regon swept out by the sonar. 

Both OLSON and the ultrasound model result in 
false alarms and missed obstacles. "True" obstacles are 



highlighted by a weighted combination of the two 
obstacle detection results (in the ground plane). and 
regstered against the detected lanes. Shown in Figure 
8 are three examples of such correlated maps of the 
world in front of MOSFET. 

Ab>; -0bs = < 

Figure 8: (L to R) Main camera image. OLSON 
obstacle map, sonar obstacle map, combined OLSON 

and sonar static world map. 
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(4) 

4 Augmentation Stage 

After the information extracted from the various 
heterogeneous sensors is correlated to form a map of 
the world in front of MOSFET, this map is augmented 
by use of temporal information. This temporal 
information essentially consists of similar world maps 
retained fiom previous iterations (see Figure 9). 

algorithm. This algorithm divides up the world 
currently in fiont of MOSFET into a grid where each 
grid elemeni is at a certain fixed &stance and angle 
relative to MOSFET. The correlation stage outputs the 
relative obstacleness at each grid element of the current 
world. This rame grid element (accounting for changes 
in its orientation due to MOSFETs motion) may have 
been a part alf MOSFETs previous world maps. If it is, 
then a time-decayed version of its previous relative 
obstacleness values are added to the current one. The 
absolute obstacleness value for each grid point in 
MOSFETs current path is determined by a decision 
tree that also takes into account the obstacle's size: 

where the sum is over neighborhood grid elements and 
Th is a predetermined (absolute) obstacleness 
threshold 

The accumulated grid model algorithm relies on 
accurate information regardmg MOSFETs motion: the 
distance s that the vehicle has moved over the last time 
increment and the steering angle B of the vehicle over 
that time increment, as shown in Figure 10. This 
information is obtained from MOSFETs motion 
controller. 

Figure 10: Vehicle Movement Model 

Figure 9: Navigation grid ul;dated for vehicle 
movement 

To understand this augmentation process, one 
has to understand the accumulated grid model 

Using J' and 19. and assuming those values stay the 
same over that small time increment, we calculate 
three motion parameters. First, the change in the 
headmg angje A# 
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s. sin( 0) 
A@ = (5) 

W 

where w is the wheel base of the vehcle - the &stance 
between the front and rear axles. Once the change in 
headmg angle has been calculated, the translational 
movement Ax and Ay of the vehicle can be calculated: 

AX = w * [cot(A& * ( 1 -  cos(A4)) + ~in(A@)] 
Ay = w * C(cot(Aq5) *sin(A#)) + (cos(A4) - l)] 

These three motion parameters allow the world grid 
map to be updated. First, the translational movement 
of the vehcle is used to s M  each gnd in the world 
map, so that the position of the vehicle is again the 
center-front of the grid. Next, the world p d  map is 
rotated to take into account the change in the heading 
of the vehicle. Each grid is rotated using a lookup 
table, which contain rotation information in 0.25 
degree increments. The lookup table is created by 
considering the polar coordmates of each grid and 
subtracting the vehicle headmg change from angular 
position of the grid. 

5 Results 

Shown in the following sequences are some 
experiments that demonstrate the efficacy of the 
dynamic grid method over the corresponding static grid 
method. MOSFET relies on using the forward-looking 
camera to detect obstacles. One of the main 
disadvantages of a (tilted) forward-looking camera is 
its limited field of view. The width of the field of view 
decreases as the &stance toward the camera decreases. 
Additionally, to achieve the desired maximum viewing 
distance from the vehicle. an area very close to the 
vehicle where no visual information is available is 
created. Figure 11 is a world map sequence as 
MOSFET navigates towards a lane. 

Figure 11: A sequence of front-loolung camera 
images (bottom of left column), the correspondmg 

static world maps (top), and the accumulated grid maps 
(bottom). 

Notice how the accumulated grid model 
remembers lanes from the past even though those lanes 
are not currently in MOSFETs current field of view. 

Figure 12 is another image sequence as MOSFET 
navigates around an obstacle. Notice how the dynamic 
model retains obstacle lnformation even after the 
obstacle leaves the field of view of the main camera. 
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Figure 12: A second sequence of front-looking 
camera images (previous page bottom right column), 

the corresponding static world maps (top), and the 
accumulated grid maps (bottom). 

6 Concluding Remarks 

This paper presents a systematic procedure for 
heterogeneous sensor fusion and temporal information 
analysis. It is applied to create a dynamic map for our 
autonomous robot MOSFET. Lane and obstacle 
information is correlated to form a static grid of the 
world in front of MOSFET. This grid is then 
augmented by a lane/obstacle-tracking procedure that 
uses a accumulated grid model. Experimental results 
are shown to illustrate the efficacy and robustness of 
this procedure. 

7 References 

[ I ]  R. DeFauw, S. Lakshmanan, N. Narasimhamurthi, 
and M. Beauvais, "STARLITE A Steering 
Autonomous Robot's Lane Investigation and Tracking 
Element," Mobile Robots X I  and Automated Vehicle 
Control Systems, Proc. SPIE 2903, 1996. 
[2] J. Borenstein and Y. Koren, "Real-Time Obstacle 
Avoidance for Fast Mobile Robots", IEEE 

235 


