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Abstract— This paper considers the problem of sensor schedul-
ing for the purposes of detection and tracking of “smart” targets.
Smart targets are targets that are able to detect when they are
under surveillance and react in a manner that makes future
surveillance more difficult. We take a reinforcement learning
approach to adaptively schedule a multi-modality sensor so as to
most quickly and effectively detect the presence of smart targets
and track them as they travel through a surveillance region. An
optimal scheduling strategy, which would simultaneously address
the issue of target detection and tracking, is very challenging
computationally. To avoid this difficulty, we advocate a two stage
approach where targets are first detected and then handed off
to the tracking algorithm.

I. I NTRODUCTION

The problem of sensor scheduling is to determine the best
way to task a sensor or group of sensors when each sensor
may have many modes and search patterns. Tasking a sensor
may include such choices as where to point, what mode to
use, and what signal to transmit. In general, sensors must
balance complex tradeoffs between competing mission goals,
e.g. detection of new targets, tracking of existing targets, and
identification of existing targets.

An optimal sensor scheduling algorithm will depend on the
posterior distribution of the system state conditioned on sensor
measurements. In our application, the system state describes
probabilistically both the uncertainty in number of targets and
locations of the individual targets. In principle, one could
derive an optimal scheduling algorithm that simultaneously
treats detection of new targets and tracking of existing targets
by defining an appropriate global reward. However, in practice,
this is very difficult due to computational considerations. To
combat these computational challenges, we take a modular
approach and treat the problem in two stages – target detection
followed by target tracking. This suboptimal algorithm can be
viewed as an approximation to an optimal algorithm which
simultaneously considers detection and tracking.

Sensor scheduling is complicated substantially when targets
under surveillance are able to detect and respond to sensing
activities (so called “smart” targets). In this paper, we consider
one such scenario. Specifically, we investigate the situation
where a sensor is charged with detecting and tracking a group
of moving ground targets and the targets have the ability

to detect some of the surveillance actions and respond by
concealing their whereabouts.

The paper proceeds as follows. In Section II, we outline
the mathematics and strategy of our two stage detection and
tracking algorithm. We first give an overview of reinforce-
ment learning methods, and then describe the application of
reinforcement learning to the target detection stage and the
tracking stage. In Section III, we provide simulation results of
the algorithm for two smart targets. The method is compared
to random and myopic strategies and shown to provide good
performance. Finally, in Section IV we conclude with some
summarizing remarks.

II. SMART TARGET DETECTION AND TRACKING

In this section, we describe the details of our two stage de-
tection and tracking algorithm. We first review reinforcement
learning and then show its application to each stage.

A. Reinforcement Learning for Optimal Solution of a MDP

The problem of detecting and tracking smart targets can
be formulated as an infinite-horizon Markov Decision Process
(MDP) [13]. It is well known that the complexity of finding
optimal policies for MDP grows exponentially with the state
and action spaces [2]. Since the sensor scheduling problem is
characterized by extremely large state and action spaces, it is
necessary to develop approximate solutions using dimension
reduction. We advocate methods from reinforcement learning
coupled with function approximation to find approximately
optimal policies for the two stages.

1) Infinite-Horizon MDP: A discounted-reward infinite-
horizon MDP is defined by a sequence of states{St}t≥0

taking values in a state spaceS, a sequence of actions{At}t≥0

taking values in an action spaceA, and a (possibly random)
reward functionr(St, At) that assigns the cost incurred (when
negative) or the reward gained (when positive) to the event of
being at stateSt and taking actionAt. In our context, the state
space characterizes the battlefield. It contains rich information
such as the number of targets present, their location, their type,
and whether they are stationary or moving. The action space
contains all the possible actions. Each action specifies which
sensors to use, their mode of operation, and where to point
them. The reward system reflects the tradeoffs between costs



of deploying a certain sensor and the gain earned from the
measurement it collects.

The process is initiated with stateS0 followed by action
A0 chosen by the controller and continues with the sequence
S1, A1, S2, A2, . . .. Under the Markovian model, givenSt and
At, St+1 is independent of all past states and actions. The
state transitions are governed by a stationary probabilistic law,
denoted byp(St+1|St, At), that specifies the distribution of
St+1 over S, given St and At. p(St+1|St, At) is either a
probability density function when the state space is continuous
or a probability mass function when it is discrete.

A stationary policyΠ is a map fromS to A that specifies
the action taken at each state. Denote the class of all policies
by P. The value function associated with policyΠ, denoted
by V Π(s) is the expected total discounted reward when being
in stateSt = s and following policyΠ, that is

V Π(s) = E

{ ∞∑
τ=t

βτ−tr(Sτ , Π(Sτ ))|St = s

}
∀s ∈ S ,

(1)
where β ∈ (0, 1) is a discount factor, which is included
to value future rewards less than immediate rewards. This
expectation is taken with respect to the joint distribution of
all the targets, which, in the context of smart targets, is
highly dependent on the action sequence. Therefore, a direct
calculation of this expression is computationally intractable.
An optimal policy is a policy that satisfies

Π∗(s) = arg max
Π∈P

V Π(S) ∀s ∈ S . (2)

It is well known that the optimal policy is the unique solu-
tion to Bellman’s equation. Unfortunately, when the state and
action spaces are large and the state transition density is either
computationally complicated or not explicitly available, this
methodology is intractable and one must resort to approximate
solutions such as Q-learning [2].

2) Q-Learning: The optimal scheduling policy for the
two stages is found using Q-learning coupled with function
approximation [17], [15], [16]. The learning part relaxes the
requirement for an explicit knowledge of the transition density,
and function approximation is used to further reduce the
dimensionality of the state and action spaces.

Given the optimal value functionV ∗, the Q-function is

Q(s, a) = E {r(s, a) + βV ∗(St+1)|St = s,At = a} , (3)

i.e., the expected reward when taking actiona at states and
then acting optimally. The Q-function satisfies the equation

Q(s, a) = E
{

r(s, a) + β max
a∈A

Q(St+1, a)|St = s,At = a

}

(4)
Given the Q-function, optimal actions are computed as

arg max
a∈A

Q(St, a) . (5)

In Q-learning the Q-function is estimated from multiple
trajectories of the process. Assume first that bothS andA
are finite. Then, there exists a lookup table representation of
Q(s, a). In this case, given an arbitrary initial value ofQ(s, a),
the one-step Q-learning algorithm ([15], p. 148) is given by
the repeated application of the update equation

Q(s, a) ← (1− γ)Q(s, a) + γ

(
r + β max

α∈A
Q(s′, α)

)
, (6)

where each of the 4-tuples{St = s,At = a, St+1 = s′, Rt =
r} are incurred during the progress of the MDP, andγ ∈ (0, 1)
decreases witht. In most realistic problems (the problems
discussed herein included) it is infeasible to represent the Q-
function in a lookup table, either because the number of states
is too large or simply because the state space is continuous.
Therefore, we require a function approximation technique to
represent the Q-function. The standard and simplest class of
Q-function approximators are linear combinations of basis
functions (also called features), i.e.Q(s, a) = θT φ(s, a),
whereφ(s, a) : S × A → RL is a feature vector associated
with states and actiona and the coefficients ofθ ∈ RL are to
be estimated. Gradient descent is used with the training data
to update the estimate ofθ, i.e.

θ ← θ + γ
(
r + β max

a′
Q(s′, a′)−Q(s, a)

)
∇θQ(s, a)

= θ + γ
(
r + β max

a′
θT φ(s′, a′)− θT φ(s, a)

)
φ(s, a) ,

Once the learning of the vectorθ is completed, optimal actions
can be computed according toarg maxa∈A θT φ(St, a).

B. Detection of Smart Targets using Reinforcement Learning

The target detection stage is formulated as a Bayesian
hypothesis testing problem in which one is trying to decide
betweenM ≥ 2 hypotheses:H1, . . . , HM . The observed
system is modelled as a MDP with a finite state spaceS
with cardinalityN . Each hypothesis corresponds to a different
subset of the states and it is assumed that there are no
transitions between states that are associated with different
hypotheses.

At each timet, one of K modes denoted byΣ1, . . . , ΣK

is used to collect a measurementzt, or alternatively a final
decision is made. The possible actions available at each time
areA = {Σ1, . . . , ΣK , D}, whereD stands for the action of
making the final decision. After actionD the detection process
ends and a reward is granted for a correct decision.

Denote byfk(z|s) the conditional density of a measurement
collected by modek given the system is at states. The state
transition probabilities of the Markov processp(St+1|St, At)
depend on the deployed sensor mode. The possible states in
S are enumerated from1 to N and the transition probabilities
are summarized in the matricesAk, k = 1, . . . , K, where
[Ak]nl = p(St+1 = n|St = l, Σk), n, l = 1, . . . N is the
probability that the system moves from statel to staten when
sensor modek is used.



The dependency on the deployed sensor mode is applicable
when a target can sense that it is being observed and may
react accordingly, e.g. hide or unfold its radar antenna. Since
the number of states is finite and known, we can use the vector
notationpt, to denote the posterior probability vector of the
target states givenZt. Using this notation, when sensork was
deployed and collected measurementzt+1, the time update is

pt+1 =
Akdiag([fk(zt+1|1), . . . , fk(zt+1|N)])pt

sum (Akdiag([fk(zt+1|1), . . . , fk(zt+1|N)])pt)
,

(7)
wherefk(zt+1|n) denotes the conditional density of a mea-
surement that was collected by sensork given that the system
is in staten, and for any vectorv, diag(v) is a diagonal matrix
with the elements ofv on its diagonal, andsum(v) is the sum
of its elements. Therefore, a policy can be defined as a map
from SN , the simplex of N-dimensional probability vectors, to
A. The expected total reward at information statept becomes

V Π(pt) = E

{ ∞∑
τ=t

βτ−tr(pτ ,Π(pτ ))

}
, (8)

with optimal policy is Π∗ = arg maxΠ∈P V Π(p). The Q-
function is defined over theN -dimensional simplexSN and
for any actiona ∈ A by

Q(pt, a) = E {r(pt, a) + βV ∗(pt+1)} , (9)

which is the expected reward when taking actiona at in-
formation statept and then acting optimally. As described
earlier, the dimensionality of the information state space is
reduced by a linear parametrization, and Q-learning is used to
approximate the Q-function. GivenQ, one finds the optimal
policy by taking the action that maximizes it at any given
information state.

C. Tracking of Smart Targets using Reinforcement Learning

Tip-offs from the detection algorithm are used to initialize
a tracking algorithm which finely geolocates and tracks mov-
ing targets. Targets are tracked by recursively estimating a
conditional probability density known as the Joint Multitarget
Probability Density (JMPD) [7], [8]. In this paper, we restrict
ourselves to the case where the number of targets is known and
fixed and the state vectors of individual targets are a scalar.
More general implementations are given in [8].

1) The JMPD and Particle Filter Approximation:In the
tracking stage, the states of the system (see Section II-A)
is given by the joint multitarget probability density. In this
subsection, we show how the state is derived and how states
are combined with measurements to determine the next state.

We define the joint multitarget conditional probability den-
sity p(x1

t ,x
2
t , ...x

T−1
t ,xT

t |Zt, Tt) as the probability forT tar-
gets with statesx1,x2, ...xT−1,xT at timet based on a set of
observationsZt. As before,Zt refers to the collection of mea-
surements up to and including timet, i.e.Zt = {z1, z2, ...zt},
where each of thezi may be a single measurement or a vector
of measurements made at timei. Each of the state vectorsxi

in the JMPD is a vector quantity and may (for example) be
of the form [x, ẋ, y, ẏ]′. For convenience, the density will be
written more compactly asp(Xt, Tt|Zt).

The sample space ofX is very large. It contains all possible
configurations of state vectorsxi. We find that a particle
filter based representation of the JMPD allows tractable im-
plementation [8]. The particle filter approximation represents
the JMPD by a collection of weighted samples, i.e.

p(X, T |Z) ≈
Npart∑
p=1

wpδ(X−Xp) . (10)

2) Information Based Myopic Sensor Management:We use
the JMPD to make tasking decisions. A good measure of the
quality of an action is the reduction in entropy expected to be
induced. Therefore, the reward (see Section II-A) will be given
by the information gained. To schedule a sensor, we enumerate
all possible sensing actions and calculate theexpectedgain in
information associated with each possible action.

The calculation of information gain between two densities
f1 andf0 is done using the Ŕenyi information divergence [14],
[5], also known as theα-divergence:

Dα(f1||f0) =
1

α− 1
ln

∫
fα
1 (x)f1−α

0 (x)dx . (11)

In our application, we are interested in computing the
divergence between the predicted densityp(Xt+1|Zt) and the
updated density,p(Xt+1|Zt+1).

We choose the sensing action that makes the divergence
between the current density and the density after a new
measurement largest. Since we do not know the outcome of a
sensing action until after the action is taken, we calculate the
expected divergence and use this to schedule the sensor. The
expected value may be written formally as an integral over all
possible outcomesz when performing sensing actionm, i.e.

||Dα||m =
∫

dzp(z|Zt,m)Dα (p(·|Zt, z)||p(·|Zt)) . (12)

3) Information Based Non-myopic Sensor Management:
As discussed in Section II-A, in many situations a non-
myopic sensor management strategy provides sensor tasking
decisions having better performance than the myopic strategy.
In particular, in the setting considered here where targets are
“smart” and react to sensing actions, the regret of choosing a
poor action, e.g. active sensing, is long lasting as the effect of
an action persists over time. Therefore, a non-myopic strategy
will be far superior to a myopic strategy.

We use Q-learning with linear function approximation to
learn a policy which behaves non-myopically. The training
process involves generation of{state, action, next state, im-
mediate reward} 4-tuples over a large number of training
episodes. In the training process, the immediate reward of an
action is computed using the actual gain in information as
measured by the Ŕenyi Divergence.



III. S IMULATION RESULTS

We consider a model problem in which an airborne platform
is trying to detect and track a set of ground targets. The
airborne platform has available a multimode sensor that is
able to use an active mode (e.g. radar) or a passive mode
(e.g. EO/IR). The sensor is able to quickly steer an antenna
so as to focus attention on specific regions of the surveillance
area. This is a simple model of a real platform like the USAF
JSTARS, which has a 24ft antenna installed on the underside
of the aircraft, is able to scan electronically in azimuth and is
able to choose between several modes of operation including
moving target indicator and synthetic aperture radar.

In this simulation, targets are characterized by their position
in one dimension. Targets are “smart” in that they sense when
they are under surveillance by an active sensor and react to
make future surveillance activities more difficult. The number
and location of the targets is unknown initially and our task is
to detect and track the targets. The model problem considered
here is summarized in Figure 1.

Fig. 1. An illustration of the model problem. The surveillance region is
broken into detection regions. The detection algorithm schedules the sensor
to most quickly determine the presence or absence of targets in each detection
region. Upon detecting targets, the tracking algorithm is tipped off with the
regions in which targets exist. The tracking algorithm then determines sensor
resource allocations that allows refinement of the initial location and tracking
as the targets move through the surveillance area.

A. Target Detection

Each detection region is modelled as taking one of three
states:s1 no target present,s2 an exposed target is present, and
s3 a camouflaged target is present. There are two hypotheses:
H1 (no target present) andH2 (a target is present, exposed or
camouflaged). The target can move from state2 to state3 if
it senses that it is being observed. However, it has a tendency
to return from state3 to state2 if it no longer senses that it
is being observed, e.g. it may be less effective in state3.

Intelligence sources provide a prior on the initial state of
the target, which constitutes the initial information state of
the processp0. The platform has one of three sensor modes
to deploy. Sensor modei, deployed at timet provides an
independent measurementzi(t). For the simulation considered
here, measurements are assumed conditionally Gaussian.

Modes1 and3 represent active modes, which can be sensed
by the target, and sensor mode2 represents a passive mode
which cannot be detected by the target. When the target is in
hide mode, it has an incentive to return to the exposed state.
Sensor mode3 is less favorable then sensor mode1 regardless
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Fig. 2. An improvement over the random allocation policy.

of the system state. It provides less information on the target,
and when it is used there is a higher probability that the target
will detect it. It was included in this study in order to show
that the optimal learned policy will indeed never use it.

Q-learning (Section II-A.2) was used to approximate the
optimal policy. The basis functions (or features) were chosen
to be indicator functions of disjoint regions ofS3 × A that
correspond to quantization of the simplexS3 into 55 disjoint
regions for each action inA.

The myopic strategy for this problem is to make an immedi-
ate decision based on the prior with taking any measurements.
Therefore, the estimated optimal policy was compared to a
randomized policy in which actions are chosen uniformly.
The improvement in terms of the difference in averaged
value, estimated from2000 Monte Carlo simulations at each
information state, is presented in Fig. 2.

B. Target Tracking

We assume the target detection algorithm has detected
targets in Regions 1 and 3 and passed this information to
the target tracking algorithm. At each time step, the sensor
is able to measure a single cell to determine the presence or
absence of targets. The sensor can use the active (mode 1) or
passive (mode 2) modes described above. Sensor modes are
characterized by a detection probabilityPd and a false alarm
probabilityPf . These probabilities are linked together via SNR
by Pd = P

1/(1+SNR)
f . This model of sensor returns corre-

sponds to thresholding of Rayleigh distributed energy from
targets in Rayleigh distributed background noise as is seen
on GMTI radar systems. Note that the sensor characteristics
are defined differently than in the detection portion of the
algorithm. Unlike the detection regions considered earlier, a
sensor cell is now a small area and targets can easily move
between cells necessitating the fine grained model.

When the target is in visible mode, the active mode works
with high detection probability and low false alarm probability,



Pd = .9 andPf = 1e−4 (corresponding to SNR = 20dB). The
passive sensor mode works with detection probabilityPd =
.5 and false alarm probabilityPf = 1e − 4 (SNR = 10dB).
When in hide mode, both modes are severely degraded and
correspond to a target with SNR = 0dB.

Targets can sense when the active mode is used and move
into hide mode to prevent further interrogation. Additionally,
targets that have moved into hide mode tend to move back
into visible mode when the passive sensor mode is used. The
parameters of interest can be summarized by the following
transition probabilities when for each of the two sensor modes:

[
Pr(visible to visible) Pr(visible to hide)
Pr(hide to visible) Pr(hide to hide)

]

A myopic strategy makes tasking decisions based only on
the expected immediate reward. Here the myopic strategy will
advocate using the active mode at all times. Depending on the
transition probabilities, this may immediately force the targets
into hide mode, making them difficult to observe in future
time steps. A non-myopic strategy, on the other hand, will take
into account the effect of current actions on future information
gaining ability and be more prudent in using the active mode.

In the simulation, we use

Transition Matrix Active Sensor Mode=
[

0 1
0 1

]

Transition Matrix Passive Sensor Mode=
[

1 0
.2 .8

]

which indicates that the target always moves into hide when
the active mode is used, and moves from hide to visible with
probability .2 when the active mode is used.

We trained a Q-function as discussed in Section II. In
Figure 3, we present results of target localization using the
Q-learning strategy detailed in Section II. We compare this
performance to (a) a random strategy, (b) a myopic strategy,
(c) a random strategy that only uses the passive mode, and
(d) a myopic strategy that only uses the passive mode. The
Q-learning strategy performs as well or better than the best of
the four competing strategies in both cases.

IV. CONCLUSION

In this paper, we have investigated the problem of sensor
scheduling for detection and tracking of smart moving ground
targets from an airborne sensor. Since the targets of interest
are able to detect and respond to certain sensing actions,
it is mandatory that the long term ramifications be taken
into account when choosing current sensing actions. This
necessity for non-myopic sensor scheduling leads to a very
computationally challenging problem.

We have addressed this numerical challenge with a two
stage approach, where both stages are solved using reinforce-
ment learning. The surveillance area is first partitioned into a
set of detection regions and a detection algorithm determines
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the presence or absence of a target in each region. Upon
detection, a tracking algorithm is used to finely geolocate and
track targets as they move through the region.
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