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Abstract: The recent emergence of agile software-controlled waveform gen-

eration provides an opportunity to dramatically improve radar system per-

formance. This chapter describes an integrated algorithm for estimating

the state of a surveillance region and using this estimate to design fu-

ture radar transmissions. Our fully adaptive radar resource management

approach emulates the perception-action cycle of cognition by first con-

structing a probabilistic estimate of the surveillance region and then using

an information-theoretic objective function to select and transmit the col-

lection of waveforms that is expected to maximally improve this estimate.

We illustrate our approach in simulation using a model of an agile multi-

mode radar which is charged with tracking and classifying multiple target

aircraft.
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12.1. Introduction

The arrival of agile software-controlled waveform generation and selection in

modern radar systems enables new algorithms which select radar transmission

parameters to optimize performance. In this chapter, we describe and illustrate

via simulation an information-theoretic approach to fully adaptive radar (FAR)

resource management (RM) which exploits this new flexibility. FAR, sometimes

referred to as “cognitive radar” is a closed-loop process which includes the steps

of sensing the environment and responding by selecting and executing the next

action(s) for the radar. It takes inspiration from the neurobiological processes

of animal cognition to allow radar systems to adapt to their environments [1,

2, 3, 4, 5]. Neuropsychologists believe that animal cognition relies on dynamic

feedback loops known as perception-action cycles (PACs) to understand and

respond to sensory information [6].

Past work in radar resource management (RRM) which has applied perception-

action approaches includes [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. While

recent research in this area refers to the techniques as “cognitive radar resource

management” [15, 16, 17, 18], older related work simply uses “sensor manage-

ment” and/or “resource allocation” [19, 20, 8, 9, 10, 11, 12, 13, 14]. Regardless

of the name, the algorithms apply a two-step process of perception and ac-

tion selection. First, the algorithms capture (perceive) the surveillance region

using a probabilistic estimate of its state. In the multi-target detection, track-

ing, and identification context we focus on, this includes estimating probability
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density functions (PDFs) on target states for each target and probability mass

functions (PMFs) on target class for each target. Second, this probabilistic

description is used to drive the selection of future sensing actions through an

optimization process where the available actions are considered and the action

set that maximizes future utility is selected.

The primary challenge of RRM is to balance multiple competing objectives

in the presence of constraints on resource usage, such as time and power. In our

use case, a single radar system is to perform multi-target track initialization,

tracking, and classification. It is given a finite time window and must balance

the demands of all the tasks using the available time. This balance is achieved

through a single global objective function which calculates the total utility of

a set of waveform selections over the time window. This objective function

is numerically optimized, subject to the time constraint, to select the future

actions the radar is to take.

Developing a single global objective function that captures the goals of the

system in a mathematical form amenable to optimization is critical for success-

ful implementation of a fully adaptive radar resource management (FARRM)

system. As the number of tasks and actions available for adaptation increases,

the complexity of the optimization becomes increasingly more difficult. Broadly

speaking, there are two main approaches to defining this objective function:

task-driven [18, 21] and information-theoretic [8]. Some work has appeared

which has compared these approaches [10, 22].

The task-driven approach first enumerates specific task-level components

of the objective function, such as the root mean square tracking error (RMSE)

and correct classification percentage. A user establishes the goal for each of

these tasks and defines the utility of being above or below that goal. Then,
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a multi-objective optimization problem is solved. One method is to define a

global task-driven objective function as the weighted sum of the utility of

the individual tasks (see [23] for a discussion of multi-objective optimization

methods for fully adaptive radar). The main benefits of this approach are that

the objective function is tied to explicit target-level goals and that it directly

lays out the relative importance of the various tasks. However, specifying task

requirements, costs, and the relative per-target and per-task weightings over

the incommensurate task-level measures requires significant domain knowledge

[18, 24, 23].

In contrast, the information-theoretic approach employs a global mea-

sure of information as its objective function. A number of different mea-

sures of information have been studied, including mutual information (MI),

entropy, Kullback-Leibler divergence (KLD), and Rényi (alpha) divergence

[8, 25, 26, 27, 28, 29]. The main benefit of an information-theoretic FARRM ob-

jective function is that it implicitly balances the different types of information

a radar may acquire – e.g., information about target position and information

about target classification are both quantified using a common measure of in-

formation [11]. However, an information-theoretic approach does not explicitly

optimize task metrics such as RMSE. As such, the information-theoretic ob-

jective functions can be difficult for the end-user to understand and connect to

specific operational goals [30]. While the information-theoretic approach does

allow for separate weightings to give different targets different priorities, and

separate weightings to give different types of information different priorities

[31], this would require an operator to specify a collection of weights.

The work in this chapter combines and extends our previous work in sensor

management [8, 9, 10, 11, 12, 13, 14] and FAR [17, 23, 32, 33, 21, 34, 22, 35]. It is
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distinguished from our previous efforts in FARRM [22, 35] in that we develop a

more comprehensive approach to information-theoretic methods of scheduling,

develop a more general and flexible multiple task tracking and classification

model, and provide new simulation examples which use real, collected aircraft

trajectories and a tracking and classification scenario where targets enter the

surveillance region midway through the vignette.

This chapter proceeds as follows. First, Section 12.2 describes our multiple

task FARRM system model, which is based on a stochastic optimization [36]

approach and builds on earlier work in [17, 32]. We describe the two main

components of the FARRM PAC - the perceptual and executive processors.

The perceptual processor is a recursive Bayesian approach to target state esti-

mation, while the executive processor employs an information-theoretic utility

function. The FARRM framework itself is agnostic to the specific objective

function and has been illustrated with task-based [17], information-based [22],

and even hybrid [35] objective function definitions. In Section 12.3 we develop

our information-theoretic utility function, which is based on the MI. In Sec-

tions 12.4 and 12.5, we provide the models for the tracking and classification

tasks, respectively, including explicit descriptions of the perceptual and exec-

utive processors. In Section 12.6 we provide airborne radar simulation results

using collected aircraft trajectories where we jointly schedule waveforms for

multi-target classification, tracking, and track initialization subject to time

constraints. Finally, Section 12.7 presents the conclusions.
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12.2. FARRM System Model

The FARRM system model is shown in Figure 12.1. It emulates the PAC

through interaction between the perceptual and executive processors. The aim

of radar scheduling is to select the radar actions (e.g., parameters of the trans-

mitted waveforms), θk, to best estimate a system state xk to achieve the

mission of the radar system. At time k, the perceptual processor receives in-

formation about the environment (including targets, clutter, noise, and other

environmental parameters) in the form of a measurement zk and uses the obser-

vation to refine its perception of the environment. Here, the perception is cap-

tured by the posterior density f(xk|Zk;Θk), where Zk
.
= {z1, · · · , zk} is the

history of measurements up to and including time k and Θk
.
= {θ1,θ2, · · · ,θk}

is the history of action vectors. The executive processor is then responsible for

the action selection portion of the PAC, i.e., choosing the next value(s) of θk

in response to the latest perception. The new θk is then provided to the radar

sensor, which takes the action, forms the new measurement zk, and passes the

measurement back to the perceptual processor. This completes one iteration

of the PAC.

12.2.1. Multiple Task PAC

We now develop the explicit mathematical model of the multiple task PAC.

Our model problem is of an agile multi-mode radar which must select radar

sensing parameters for a set of M tracking and classification tasks.

Let the resource management frame length be TF seconds, and let k denote

the frame index (time step). We assume there are M dwells in each frame,

corresponding to theM tasks. Each of theM dwells may be assigned a different
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Figure 12.1: FARRM system model

amount of time at each time step. M may change as tasks come and go, for

example when a target enters or exits the surveillance region.

For each of theM task dwells, the radar may elect to transmit nothing (tak-

ing up no time and providing no utility) or one of L waveforms from a library

of waveforms. Let al; l = 0, · · · , L denote each of the possible actions (wave-

forms), where a0 indicates no waveform is transmitted, and A = {a0, · · · , aL}

denotes the set of actions. Each waveform has a time duration, equal to the

coherent processing interval (CPI), as well as specific parameters, such as the

bandwidth and pulse repetition frequency (PRF), which characterize the wave-

form and its utility. When a waveform is chosen, it is fixed for the entire task
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dwell/CPI.

The radar resource parameter vector, or action vector, for the kth frame is

defined as the M × 1 vector

θk =

[
θ1,k, θ2,k, · · · , θM,k

]T
, (12.1)

where θm,k is the action chosen from A for the mth task dwell of the kth frame.

Following the approach in [37, 11], the state vector has the form:

xk =

[
xT
1,k, xT

2,k, · · · , xT
M,k

]T
, (12.2)

where each xm,k,m ∈ {1, · · · ,M} is a single task state vector containing com-

ponents for the particular task of interest. For tracking tasks, we use a tracking

state vector which consists of kinematic variables (position, velocity, and accel-

eration) as well as the received signal-to-noise ratio (SNR). For classification

tasks, the state vector is a scalar classification variable. The target class is a dis-

crete random variable whose value is taken from a discrete, finite set of values,

while the tracking state variables are continuous random variables. Therefore,

the state of the surveillance region is described using a combination of a PDF

for the continuous components and a PMF for the discrete components.

Given the action vector θk, the radar sensor transmits the selected wave-

forms, receives returns, and generates a measurement vector zk, which has the

form:

zk =

[
zT
1,k, zT

2,k, · · · , zT
M,k

]T
, (12.3)

where zm,k is the measurement vector for the mth task during the kth frame.

It may be a vector, a scalar, or empty.
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The system state xk evolves according to a state transition model, which

we assume to be a first-order Markov model with initial target state PDF/PMF

q(x0) and a state transition PDF/PMF q(xk|xk−1). The measurement model is

characterized by the conditional PDF/PMF, or likelihood function, f(zk|xk;θk),

which is a function of the system state vector xk and the action vector θk.

The first element of the perception-action cycle is the perceptual processor.

The goal of the perceptual processor is to combine known sensing actions

and received measurements with the models of system state evolution and

measurement statistics to construct a posterior PDF/PMF f(xk|Zk;Θk) on

the system state and a corresponding system state estimate x̂k(Zk).

For our first-order Markov motion model, the posterior PDF/PMF of xk

given Zk can be obtained using the Bayes-Markov recursion:

f+ (x0) = q (x0)

f− (xk)
.
= f (xk|Zk−1;Θk) =

∫
q(xk|xk−1)f

+(xk−1)dxk−1

f− (zk)
.
= f(zk|Zk−1;Θk) =

∫
f(zk|xk;θk)f

−(xk)dxk (12.4)

f+(xk)
.
= f (xk|Zk;Θk) =

f(zk|xk;θk)f
−(xk)

f− (zk)
,

where f−(xk) is the predicted PDF/PMF obtained from the motion update

step and f+(xk) is the posterior PDF/PMF obtained from the information

update step.

The state estimation performance is characterized by the posterior Bayes

risk, which is the expected value of a perceptual processor error function,

ϵ (x̂(Zk),xk), with respect to the posterior PDF/PMF,

R+(Zk;Θk) = E+
k {ϵ (x̂(Zk),xk)} , (12.5)
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where E+
k {·} denotes expectation with respect to f+(xk).

1 The state estimate

is found by minimizing the posterior Bayes risk:

x̂k(Zk) = argmin
x̂(Zk)

R+(Zk;Θk). (12.6)

The second element of the perception-action cycle is the executive proces-

sor. The function of the executive processor is to select future sensing actions

to optimize the performance of the state estimator that will include both the

future and past observations. For single time-step scheduling, we define the

joint conditional PDF/PMF of xk and zk conditioned on Zk−1 as:

f↑(xk, zk)
.
= f(xk, zk|Zk−1;Θk) = f(zk|xk;θk)f (xk|Zk−1;Θk) . (12.7)

From (12.4), the joint conditional PDF can also be expressed as:

f↑(xk, zk) = f+(xk)f
− (zk) . (12.8)

If we take the expectation of the error function with respect to the joint

conditional PDF, we obtain the predicted conditional (PC)-Bayes risk as

R↑(θk|Zk−1;Θk−1) = E↑
k{ϵ(x̂(Zk),xk)}, (12.9)

where E↑
k{·} denotes expectation with respect to f↑(xk, zk). Using (12.5) and

(12.8), the PC-Bayes risk can also be expressed as the expectation of the pos-

1The most commonly used error functions are the squared error, (x̂(Zk)− xk)
2, for con-

tinuous random variables, and the indicator function, 1xk (x̂(Zk)), for discrete random vari-

ables. The resulting Bayes risks are the mean square error and probability of correct decision,

respectively.
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terior Bayes risk with respect to f− (zk), i.e.,

R↑(θk|Zk−1;Θk−1) = E−
zk
{R+(Zk;Θk)}, (12.10)

where E−
zk
{·} denotes expectation with respect to f− (zk).

Ideally, the executive processor would choose the next action vector to min-

imize the PC-Bayes risk. However, the PC-Bayes risk does not generally have

a closed-form analytical expression. As a substitute, we use an information-

theoretic measure of utility that is analytically tractable and reflects the qual-

ity of the target state estimate through the amount of information it contains,

which we denote as I↑(θk|Zk−1;Θk−1). The executive processor optimization

problem is then to select the next action vector to maximize the information,

θk = argmax
θ

I↑(θ|Zk−1;Θk−1). (12.11)

12.2.2. Independent Tasks

We assume that the task transition models are independent across tasks and

that the measurements in each dwell are independent. Under these assump-

tions, the prior and transition PDF/PMFs and the likelihood function factor

into a product of individual task terms, expressed as:

q(x0) =

M∏
m=1

q(xm,0),

q(xk|xk−1) =

M∏
m=1

q(xm,k|xm,k−1), (12.12)

f(zk|xk;θk) =

M∏
m=1

f(zm,k|xm,k; θm,k).
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With this factorization, the joint Bayes-Markov recursion in (12.4) decouples

into M individual recursions, and the posterior PDF/PMF as well as the joint

conditional PDF/PMF have the factored forms:

f (xk|Zk;Θk) =
M∏

m=1

f(xm,k|Zm,k;Θm,k)

f(xk, zk|Zk−1;Θk) =
M∏

m=1

f(xm,k, zm,k|Zm,k−1;Θm,k), (12.13)

where Zm,k
.
= {zm,1, · · · , zm,k} and Θm,k

.
= {θm,1, θm,2, · · · , θm,k} are the

history of measurements and actions, respectively, for the mth task.

We further assume that the error function ϵ (x̂(Zk),xk) is the sum of task

error functions,2

ϵ (x̂(Zk),xk) =
M∑

m=1

ϵ (x̂m(Zk),xm,k) . (12.14)

Then the Bayes risk is the sum of task Bayes risks,

R+(Zk;Θk) =
M∑

m=1

R+(Zm,k;Θm,k), (12.15)

and the task state estimates can be obtained separately by minimizing the task

Bayes risk:

x̂m,k(Zm,k) = argmin
x̂m(Zm,k)

R+(Zm,k;Θm,k). (12.16)

2The task error functions may be weighted to account for different priorities among the

tasks.
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The PC-Bayes risk is also the sum of task PC-Bayes risks,

R↑(θk|Zk−1;Θk−1) =
M∑

m=1

R↑(θm,k|Zm,k−1;Θm,k−1), (12.17)

and the information-theoretic utility function (if chosen as described in the

next section) is the sum of task information functions,

I↑(θk|Zk−1;Θk−1) =
M∑

m=1

I↑m(θm,k|Zm,k−1;Θm,k−1). (12.18)

The executive processor still optimizes the joint information-theoretic utility

function to determine the next set of actions. It should be emphasized that the

optimization is in a global sense and the next action may not be the optimal

solution for a particular radar task in isolation.

12.3. Information-theoretic Utility Func-

tion

We now develop the executive processor information-theoretic utility function.

12.3.1. Definitions

We begin by defining some basic continuous and discrete random variables

and their PDFs and PMFs, then provide a review of the definitions of various

information-theoretic quantities and some relationships between them. The

material is taken from [25] and [26].

Let ξ denote a discrete random variable that takes on one of Nξ values
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in the set C = {ξ1, ξ2, · · · , ξNξ
} and let f(ξ) denote its PMF. We denote the

components of f(ξ) as fi(ξ) = P (ξ = ξi); i = 1, · · · , Nξ. Let d denote a discrete

random variable that takes on one of Nd values in the set D = {d1, d2, · · · , dNd
}

and let f(d) denote its PMF. Let f(ξ|d) denote the conditional PMF of ξ given

d. We denote the components of f(ξ|d) as fi|j(ξ|d) = P (ξ = ξi|d = dj); i =

1, · · · , Nξ; j = 1, · · · , Nd.

The KLD between two PMFs for the discrete random variable ξ is defined

as:

D (f(ξ)||g(ξ)) .
=

Nξ∑
i=1

fi(ξ) ln
fi(ξ)

gi(ξ)
, (12.19)

For a discrete random variable, the entropy characterizes the level of un-

certainty or information. The entropy of ξ is defined as:

Hξ
.
= −

Nξ∑
i=1

fi(ξ) ln fi(ξ). (12.20)

The entropy has the property 0 ≤ Hξ ≤ ln(Nξ). The entropy is low when

the PMF is concentrated on one of the classes and high when the PMF is

distributed across the classes. The maximum value is obtained when all classes

have the same probability. The conditional entropy of ξ given d is defined as:

Hξ|d
.
= −

Nd∑
j=1

fj(d)

Nξ∑
i=1

fi|j(ξ|d) ln fi|j(ξ|d). (12.21)

The MI between ξ and d is defined as:

Iξd
.
= Ed {D (f(ξ|d)||f(ξ))} =

Nd∑
j=1

fj(d)


Nξ∑
i=1

fi|j(ξ|d) ln
fi|j(ξ|d)
fi(ξ)

 , (12.22)

thus the MI is the expected KLD between the conditional PMF of ξ given d
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and the marginal PMF of ξ, where the expectation is with respect to d. There

are many relationships between these quantities, including:

Hξ|d = Hξ − Iξd. (12.23)

Let x and z denote vectors of continuous random variables with PDFs f(x)

and f(z), respectively. Let f(x|z) denote the conditional PDF of x given z.

The KLD between two PDFs for the continuous random variable x is defined

as:

D (f(x)||g(x)) .
=

∫
f(x) ln

f(x)

g(x)
dx. (12.24)

For continuous random variables, the entropy of x is defined as:3

Hx
.
= −

∫
f(x) ln f(x)dx, (12.25)

and the conditional entropy of x given z is defined as:

Hx|z
.
= −

∫
f(z)

{∫
f(x|z) ln f(x|z)dx

}
dz. (12.26)

The MI between x and z is defined as:

Ixz
.
= Ez {D (f(x|z)||f(x))} =

∫
f(z)

{∫
f(x|z) ln f(x|z)

f(x)
dx

}
dz (12.27)

3For continuous random variables, the standard terminology for the definitions in (12.25)

and (12.26) are the differential entropy and conditional differential entropy, and the stan-

dard notations are hx and hx|z, respectively. However, since we are using a combination of

continuous and discrete random variables, we follow the convention in [26] and use the same

terminology (entropy) and notation (Hx) for both continuous and discrete random variables.
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and we have the following relationship:

Hx|z = Hx − Ixz. (12.28)

12.3.2. Objective Function

In Section 12.2.1, we showed that the expected task performance is character-

ized by the PC-Bayes risk, which is the expected value of the posterior Bayes

risk over the predicted PDF of the next measurement f− (zk). Since the PC-

Bayes risk is difficult to compute analytically, we seek an information-theoretic

measure of utility that is easier to analyze and results in an executive processor

optimization problem whose solution is the same as, or close to, the solution

that would be obtained if the PC-Bayes risk was used.

The foundation of our approach is the observation that the entropy of

the posterior distribution is a suitable information-theoretic surrogate for the

posterior Bayes risk. It is low when the posterior distribution contains a lot of

information about the state and good state estimates with low Bayes risk can

be obtained. If we take the expected value of the posterior entropy with respect

to f− (zk), we obtain the corresponding surrogate for the PC-Bayes risk, which

turns out to be the conditional entropy, defined in (12.21) and (12.26).

The entropy of the predicted and posterior PDF/PMFs are defined as:

H−
k (Zk−1;Θk−1) = −

∫
f−(xk) ln f

−(xk)dxk,

H+
k (zk|Zk−1;θk,Θk−1) = −

∫
f+(xk) ln f

+(xk)dxk, (12.29)
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and the conditional entropy is

H↑ (θk|Zk−1;Θk−1) = −
∫

f−(zk)H
+
k (zk|Zk−1;θk,Θk−1) dzk. (12.30)

Using the property in (12.28), the conditional entropy can be written as

H↑ (θk|Zk−1;Θk−1) = H−
k − Ixz(θk|Zk−1;Θk−1). (12.31)

where

Ixz(θk|Zk−1;Θk−1)
.
= E−

zk

{∫
f+(xk) ln

f+(xk)

f−(xk)
dxk

}
(12.32)

is the MI (or expected KLD) between the target state and the next measure-

ment, defined in (12.22) and (12.27).

Since H−
k in (12.31) is not a function of the action vector θk, the MI is

an equivalent information-theoretic utility function to the conditional entropy,

which can be maximized to obtain the next action vector.

The MI is a measure of the expected gain in information [8, 10, 13, 16, 29].

For our independent task model, the global MI decomposes into the sum of

the task MIs as:

Ixz(θk|Zk−1;Θk−1) =

M∑
m=1

Ixz;m(θm,k|Zm,k−1;Θm,k−1). (12.33)

To summarize, our information-theoretic method for selecting the next ac-

tion vector is to find the action vector that maximizes the MI,

θk = argmax
θ

Ixz(θ|Zk−1;Θk−1). (12.34)
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12.4. Tracking Task

For a tracking task, the tracking state vector consists of kinematic variables

(position, velocity, and possibly acceleration) and the received SNR. For three-

dimensional (3D) tracking, the state vector has the form:

xm,k = [xm,k, ẋm,k, ẍm,k, ym,k, ẏm,k, ÿm,k, z, żm,k, z̈m,k, sm,k]
T . (12.35)

We assume an initial tracking state distribution that is multivariate Gaus-

sian with mean µm,0 and covariance matrixΣm,0, which we denote as q(xm,0) =

N (xm,0;µm,0,Σm,0). We assume a linear motion model of the form:

xm,k = Fmxm,k−1 + em,k, (12.36)

where Fm is the state transition matrix and em,k is zero-mean additive white

Gaussian noise (AWGN) with covariance matrix Qm. The transition PDF is

then q(xm,k|xm,k−1) = N (xm,k;Fmxm,k−1,Qm).

We assume that when new targets enter the surveillance region, they are

detected by a separate surveillance process and provided to the system with

an initial tracking state distribution. Targets may arrive at the onset of the

simulation or part way through.

We assume measurements are received with detection probability PD (xm,k; θm,k)

and false alarm probability PF . The detection probability is determined by the

detection threshold, which is set to achieve a desired PF , and the received SNR,

which is a function of the sensor parameters and target state. When measure-

ments are received, we assume they follow a nonlinear, AWGN measurement

model of the form:

zm,k = hm,k (xm,k) + nm,k, (12.37)

18



where hm,k (xm,k) is a nonlinear transformation from the target state space

to the radar measurement space and nm,k is the measurement error, which

is modeled as a zero-mean Gaussian random vector with covariance matrix

Rm,k (θm,k). The single target likelihood function is then

f(zm,k|xm,k; θm,k) = PD (xm,k; θm,k)N (zm,k;hm,k (xm,k) ,Rm,k (θm,k)) .

(12.38)

In the perceptual processor, we implement the Bayes-Markov recursion

expressions in (12.4) using the extended Kalman filter (EKF). It requires eval-

uating the Jacobian matrix, which is defined as:

H̃m,k(x) =
[
∇xh

T
m,k(x)

]T
. (12.39)

The EKF recursion is as follows:

Initialization:

µ+
m,0 = µm,0

P+
m,0 = Σm,0 (12.40)

Motion update:

µ−
m,k = Fmµ+

m,k−1

P−
m,k = FmP+

m,k−1F
T
m +Qm (12.41)
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Information update, when a measurement is received:

Hm,k = H̃m,k(µ
−
m,k)

Km,k = P−
m,kH

T
m,k

[
Hm,kP

−
m,kH

T
m,k +Rm,k(θm,k)

]−1

µ+
m,k = µ−

m,k +Km,k

[
zm,k − hm,k(µ

−
m,k)

]
(12.42)

P+
m,k = P−

m,k −Km,kHm,kP
−
m,k

Information update, when no measurement is received:

µ+
m,k = µ−

m,k

P+
m,k = P−

m,k. (12.43)

The posterior Bayes risk for the tracking state vector is the trace of the

posterior mean square error (MSE) matrix. The solution to (12.16) is the mean

of the posterior PDF:

x̂m,k(Zm,k) = E+
k {xm,k} = µ+

m,k. (12.44)

In the executive processor, the MI has the form:

Ixz;m(θm,k|Zm,k−1;Θm,k−1) = (12.45)

PD (xm,k; θm,k)

2

(
ln |P−

m,k|+ ln

∣∣∣∣[P−
m,k

]−1
+HT

m,kRm,k(θm,k)
−1Hm,k

∣∣∣∣ ),
where | · | denotes the determinant of a matrix.

The probability of detection PD (xm,k; θm,k) and the estimation covariance

matrix Rm,k(θm,k) depend on the characteristics of the radar waveform, and

generally have closed form analytical expressions. The probability of detection

20



also depends on the current state of the target xm,k. To evaluate the MI,

we substitute the probability of detection evaluated at the predicted state

estimate, PD

(
µ−
m,k; θm,k

)
. The remaining terms in the MI are available from

the EKF recursion, so they are straightforward to evaluate.

12.5. Classification Task

For a classification task, the state vector is a scalar classification variable, xm,k,

which takes on one of a discrete set of Nc values in the set C,

xm,k ∈ C = {1, 2, · · · , Nc} . (12.46)

The prior PMF q(xm,0) is represented by the Nc × 1 vector qm, which

consists of the Nc probabilities

[qm]i = P (xm,0 = i); i = 1, · · · , Nc. (12.47)

The transition model q(xm,k|xm,k−1) is represented by the Nc ×Nc transition

matrix Υm, where

[Υm]ij = P (xm,k = i|xm,k−1 = j); i, j = 1, · · · , Nc. (12.48)

Depending on the application, switching between classes may or may not be

possible. For example, if the class represents a behavior of the target, then it

is possible to change classes, however if the class represents a fixed property of

the target such as the type of vehicle or aircraft, then the class cannot change

and Υm is equal to the identity matrix.
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We assume that when new targets enter the surveillance region, they are

detected by a separate surveillance process and provided to the system with

an initial classification state distribution.

We assume that the radar data is processed to produce a discrete valued

measurement of target class, i.e., zm,k ∈ C = {1, 2, · · · , Nc} and the likelihood

function f(zm,k|xm,k; θm,k) is represented by the Nc × Nc likelihood matrix

Lm(θm,k), where

[Lm]ij (θm,k) = P (zm,k = i|xm,k = j; θm,k); i, j = 1, · · · , Nc. (12.49)

In the perceptual processor, the Bayes-Markov recursion can be computed

exactly. Let f−
i (xm,k)

.
= P (xm,k = i|Zm,k−1;Θm,k−1) denote the predicted

PMF and f+
i (xm,k)

.
= P (xm,k = i|Zm,k;Θm,k) denote the posterior PMF. The

recursion is as follows:

f+
i (xm,0) = [qm]i ; i = 1, · · · , Nc,

f−
i (xm,k) =

Nc∑
j=1

[Υm]ij f
+
j (xm,k−1); i = 1, · · · , Nc

f−(zm,k) =

Nc∑
j=1

[Lm]zm,k,j
(θm,k)f

−
j (xm,k) (12.50)

f+
i (xm,k) =

[Lm]zm,k,i
(θm,k)f

−
i (xm,k)

f−(zm,k)
; i = 1, · · · , Nc.

The posterior Bayes risk for the classification state vector is the posterior

probability of incorrect classification. The solution to (12.16) is the maximum

of the posterior PMF:

x̂m,k(Zm,k) = argmax
i∈C

f+
i (xm,k) . (12.51)
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In the executive processor, to compute the classification MI, we first define

the prior probability of receiving classification measurement zm,k using the

notation

f−
j (zm,k)

.
= P (zm,k = j|Zm,k−1;Θm,k) (12.52)

and the posterior probability of class xm,k after receiving observation zm,k using

the notation

f+
i|j(xm,k|zm,k)

.
= P (xm,k = i|zm,k = j,Zm,k−1;Θm,k). (12.53)

These quantities are computed for every zm,k using the expressions in

(12.50). Then the MI is computed directly from the definition in (12.22):

Ixz;m(θm,k|Zm,k−1;Θm,k−1) = (12.54)

Nc∑
j=1

f−
j (zm,k)

{
Nc∑
i=1

f+
i|j(xm,k|zm,k) ln

f+
i|j(xm,k|zm,k)

f−
j (zm,k)

}
.

12.6. Simulation Example

This section demonstrates our information-theoretic approach to fully adaptive

radar resource management in a multitarget tracking, classification, and track

initialization simulation.

12.6.1. Simulation Scenario

Our model problem consists of an agile multimode radar platform and three air-

borne targets as illustrated in Figure 12.2. The radar platform is charged with

performing tracking and classification of the targets in the surveillance region,
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which is indicated by the box. Targets 1 and 3 are always in the surveillance

region, while Target 2 enters about one-third of the way into the 250-second

simulation.

Figure 12.2: Our simulation has an airborne radar platform and three airborne
targets. Target trajectories are derived from the TrajAir [38] collected aircraft
dataset. The surveillance region is indicated by the solid box.

The radar platform flies at a constant heading with constant velocity of 200

m/s. The three targets are taken from the TrajAir [38] data collection, which

is a set of recorded trajectories over the Pittsburgh-Butler Regional Airport in

Pennsylvania. Since the TrajAir targets are general aviation aircraft operating

over a narrow region, we spatially shifted and scaled the recorded flight data

to construct speeds and locations consistent with maneuvering targets. Target

1 has a range between 40 km and 60 km to the radar platform. Target 2 has

a range between 50 km (at entry into the surveillance region) and 35 km to

the radar platform (at the end of the simulation). Target 3 has a relatively

24



constant range of approximately 45 km to the radar platform. All targets vary

their speeds between 100 m/s and 300 m/s during the 250-second simulation

in accordance with the (scaled) recorded data. The simulation has four tasks:

track the three targets and identify (classify) Target 1.

12.6.2. Sensor and Task Models

The tracking state vector xm,k consisting of the three-dimensional position,

velocity, acceleration, and SNR as specified in (12.35). We define the SNR in

decibels as sm,k = 10 log10 ζm,k, where ζm,k is the SNR in linear scale. The

classification state variable xm,k is assumed to be one of Nc = 5 classes. For

tracking, we use the Singer model [39] for target motion as the tracking transi-

tion model and for classification, we assume a transition matrix with diagonal

entries [Υm]ii = 0.95 and off-diagonal entries [Υm]ij = 0.0125. Although the

target class should not change, providing some probability for transition forces

the radar to make periodic classification measurements and prevents the state

estimate from getting stuck in an incorrect class due to an incorrect measure-

ment.

We assume the radar transmits a waveform and receives returns through

an antenna with a fixed azimuth beamwidth (∆ϕ) and elevation beamwidth

(∆θ). The transmitted waveform is characterized by its center frequency (fc),

pulse bandwidth (Bp), PRF (fp), and number of pulses (Np). We model the

tracking measurement process as providing detections which are estimates of

target range (R), range-rate (Ṙ), azimuth angle (ϕ), elevation angle (θ), and

SNR in decibels (s = 10 log10 ζ). For this simulation, we fix fc, ∆ϕ, ∆θ and

assume that the radar can select Bp, fp, andNp from a collection of options. We
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also assume that the detection threshold and the false alarm rate PF are fixed.

Let Bp;m,k, fp;m,k, and Np;m,k denote the parameters of the selected waveform

for the mth tracking task. The detection probability is given by [40]:

PD(ζm,k; θm,k) = QMAR

(√
2Np;m,kζm,k,

√
−2 lnPF

)
, (12.55)

where QMAR(a, b) is the Marcum Q-function.

The estimation covariance matrix is a diagonal matrix whose components

are [41, 42]:

[Rm,k(θm,k)]R =

[
2Np;m,kζm,k

(
2

c

)2

(3Bp;m,k)
2

]−1

[Rm,k(θm,k)]Ṙ =

[
2Np;m,kζm,k

(
4πfc
c

)2
(

1

12B2
p;m,k

+
(N2

p;m,k − 1)

12f2
p;m,k

)]−1

[Rm,k(θm,k)]ϕ =

[
2Np;m,kζm,k

(
1.782π

∆ϕ

)2
]−1

(12.56)

[Rm,k(θm,k)]θ =

[
2Np;m,kζm,k

(
1.782π

∆θ

)2
]−1

[Rm,k(θm,k)]s =

(
10

ln(10)

)2

,

where c = 3× 108 m/s is the speed of light.

Classification measurements are characterized similarly. The radar is as-

sumed to transmit and receive a CPI, process the data through a target recog-

nition algorithm and return a discrete classification call. We characterize the

performance of a classification waveform by the probability that the discrete

classification call is correct, denoted by pdc. Let pdc;m,k denote the value cor-

responding to the selected waveform for the mth task. The classification like-

lihood matrix has the form:
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[Lm]ij (θm,k) =

 pdc;m,k i = j

1− pdc;m,k

Nc − 1 i ̸= j.
(12.57)

12.6.3. Waveforms

We assume that the radar resource management frame length is the same as

the track update interval, which is TF = 100 ms. The 100-ms frame is used to

perform both surveillance (which detects new targets) and service of existing

targets by performing tracking and classification tasks. Our focus in this study

is on scheduling the agile radar to best perform the latter of those two functions,

tracking and classification of known targets.

As such, we assume that 90 ms of the 100-ms frame time is reserved for

performing the surveillance function, leaving 10 ms to perform tracking and

classification of the known targets. The surveillance function is assumed to

be performed using some standard method (e.g., periodic scan with detection

revisits and coarse initialization) and provides coarsely initialized targets with

a large covariance which then become part of the tracking and classification

tasks.

The resource management algorithm is free to perform a measurement for

each task during the tracking and classification portion of the timeline or elect

to measure any subset of the tasks as long as the total measurement time is less

than or equal to the 10-ms time budget. The waveforms available for tracking

and classification, their parameters, and dwell times are given in Table 12.1.

Also included is the “no observation” waveform #0. This allows the scheduler

to choose not to measure some of the tasks at the current frame, thereby leaving

extra time for other tasks. The fixed tracking waveform parameters are fc = 3
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Table 12.1: Our airborne radar scheduler selects between
classification and tracking waveforms. When selecting a track-
ing waveform, the scheduler chooses bandwidth, pulse count,
and PRF. When selecting classification waveform, the sched-
uler chooses the classification accuracy.

Waveform Parameter(s) Dwell Time

0 N/A 0.0

# Bp (MHz) fp (kHz) Np T (ms)

1,2,3 2.5, 5, 7.5 20 25 1.25

4,5,6 2.5, 5, 7.5 10 25 2.50

7,8,9 2.5, 5, 7.5 10 50 5.00

# pdc T (ms)

10 0.6 1.0

11 0.75 2.5

GHz, ∆ϕ = 2◦, ∆θ = 6◦, and PF = 10−6.

The set of waveforms allows the scheduler to perform trade-offs between

receiving information on different tasks as well as receiving different types of

information. For example, it may select a longer CPI (yielding higher PD or

pdc) for one task at the expense of a shorter CPI (yielding lower PD or pdc) or

no CPI for other tasks.

12.6.4. Waveform Optimization

The predicted utility of a sensing action is scored using the information-

theoretic utility function in (12.33). The objective is to maximize the total

information gain over the four tasks subject to the timing constraint. This is

accomplished by selecting an information-optimal set of waveforms to transmit
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for the collection of tasks at each time step.

The numerical waveform optimization proceeds as follows. We first com-

pute the information-theoretic utility of each waveform for each task. The

computational complexity is O(LM), where L is the number of waveforms and

M is the number of tasks. Next, we record the maximum utility waveform

from among all waveforms having the same CPI for each task. This reduces

the number of permutations under consideration by discarding any equal-CPI

waveforms that have lower utility than another choice for the same task. As

such, we do not explicitly enumerate the LM combinations of waveforms that

could be transmitted together. Finally, we apply a discrete double auction pa-

rameter selection (DDAPS) [43, 44] approach to find the set of M waveforms

that maximize the total MI subject to the timing constraint.

12.6.5. Simulation Results

Simulation example results for a single trial are shown in Figures 12.3 and 12.4.

Figure 12.3 shows the coarsest level description of results, indicating how much

time (of the 10-ms budget) is allocated to each task at each of the time steps.

Since each time step is 100 ms, there are 2, 500 time steps in the 250-second

simulation.

Since Target 2 does not enter the surveillance region until t = 100 s, no

resources are allocated to it until that point. At the beginning of the simula-

tion (t = 0 s to t = 5 s), the scheduler elects to split its time between tracking

dwells on Targets 1 and 3 and classification dwells on Target 1. Once Target 1

is identified (at approximately t = 5 s), the scheduler divides its time between

tracking dwells on Targets 2 and 3, only occasionally revisiting with a classi-
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Figure 12.3: The time (out of 10 ms) the scheduler gives to each task for a
single simulation. At the beginning, the scheduler performs some classification
dwells and then rarely thereafter. Track dwells are initially divided between
Tracks 1 and 3. Once Target 2 enters, it is preferentially measured. Later in the
simulation, the scheduler gives extra resources to Track 1 due to its distance.

fication dwell on Target 1 since our model includes some time-induced class

confusion for the reasons described in Section 12.6.2. When Target 2 enters

at t = 100 s, the surveillance process provides a very coarse estimate of tar-

get state. This large track covariance leads the scheduler to preferentially use

high-CPI dwells on Target 2 temporarily. Shortly thereafter, the range from

the radar platform to Target 1 has increased enough that the scheduler now

elects to use high CPI dwells on Track 1 to receive larger PD at the expense

of reduced PD on Tracks 2 and 3.

A richer depiction of the scheduling choices for the three targets is given

in Figure 12.4, which shows the bandwidth, PRF, and pulse count selected

for each track at each scheduling time. As described in Section 12.6.2, these

parameter selections influence the statistics of the measurements as well as

SNR and detection probability.
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Figure 12.4: The selected waveforms for tracking Target 1 (left), Target 2 (mid-
dle), and Target 3 (right) for a single simulation. The scheduler varies the band-
width, PRF, and pulse count to trade between detectability and range/range-
rate resolution subject to the total time constraint.

The parameter selections correspond to the trade-offs the scheduler must

make when selecting the waveform parameters. First, the limited time budget

means that if the scheduler elects to use a longer CPI on one task to improve

detectability that necessarily reduces the amount of time available for other

tasks. Additionally, the scheduler may choose to get improved range resolution

through higher bandwidth but that leads to reduced detection probability due

to the correspondingly larger noise bandwidth entering the radar. This can be

compensated for by increasing CPI at the expense of other targets. We see

from the figure that the scheduler opts to choose different bandwidths, PRFs,

and CPIs (via selection of PRF and pulse count) throughout the simulation as

the received detections and track estimate warrant.

We now turn to a Monte Carlo analysis of the simulation. Figures 12.5 to
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12.9 show the result of 100 Monte Carlo realizations of the simulation scenario.

All trials share the same sensor and target trajectories, but the measurement

realizations are drawn randomly each time. This leads to variations in the

scheduling decisions and the MI, RMSE, and probability of correct class for

each trial.

First, Figure 12.5 shows the average (over 100 trials) amount of time (of the

10 ms) that is allocated to each task at each time step in the simulation. This

result is similar to that of the corresponding single simulation figure, showing

how the scheduler elects to move its attention between the four tasks as the

situation evolves. The prominent features include dividing attention equally

between Tracks 1 and 3 early; focusing (briefly) on Track 2 at t = 100 s; and

giving extra time to Track 1 near the end when its range to the platform is

largest.

Figure 12.5: The average (over 100 trials) amount of time (out of 10 ms) the
scheduler dedicates to each task during the simulation.

Next, Figure 12.6 illustrates the average MI for each of the four tasks (three
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tracking task and one classification task) for the waveforms selected as well as

the total MI as a function of time. The MI for each waveform is computed as

described in (12.46), where the information flow the observation is expected

to provide is weighted by the detection probability. The set of waveforms to

transmit at a particular time is chosen to maximize the total MI subject to the

total time constraint. Therefore, while the total MI represents the maximum

total MI possible given the time constraints, the MI of the individual tasks is

not necessarily the largest MI that any waveform could produce on that task.

The total MI is approximately constant over the simulation. Notable excep-

tions happen at t ≈ 15 s, where Track 3 performs a maneuver and at t = 100

s, when Track 2 enters the region and has a large covariance provided by the

detection engine. An additional feature this analysis reveals is that the MI

of Track 1 declines near the end of the simulation as its range increases and

detection probability is correspondingly decreased.

A more detailed look at the MI and its optimization is given in Figure

12.7. For each of the four tasks, we compare the MI (again, averaged over 100

trials) in the four-task simulation with the MI in a simulation that has only a

single task. Broadly speaking, we find that there is a small loss in MI when all

four tasks are present, resulting from the time constraint which prevents the

scheduler from selecting the best possible waveform for each particular task at

all times. A second feature of the comparison is that occasionally the four-task

approach has more MI than the single-task MI (e.g., Track 3 at t = 15 s).

This is because the MI is a measure of the information gain the measurement

provides. In the single-task case, the scheduler is able to use the full CPI

to follow Track 3, meaning that it is well followed even as it maneuvers. In

contrast, when the time is to be divided among many tasks, Track 3 is not as
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Figure 12.6: The average (over 100 trials) of the MI for each task, and the total
MI.

well followed and is temporarily out of track as it maneuvers. This leads to a

large expected information flow from making an observation immediately after

the maneuver.

Figure 12.8 shows the average position and velocity RMSE as a function of

time for the four-task simulation. Track 1 and Track 3 are detected at onset,

while Track 2 is detected after t = 100 s. Track 2 is initialized with a large

covariance and has a short period of larger RMSE while the track is refined.

After that period, the RMSEs of both position and velocity are similar for the

three targets until the end of the simulation where Target 1’s distance makes

it significantly more difficult to detect.
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Figure 12.7: A comparison of the average (over 100 trials) MI in a four-task
simulation with the MI in a simulation that has only a single task.

Finally, Figure 12.9 shows the posterior probability of correct class for Tar-

get 1 averaged over 100 trials. As mentioned earlier, our classification state

transition model diffuses the class probability over time, requiring occasional

revisits with a classification waveform to update the probability. We find em-

pirically that the system maintains a high probability in the correct class.
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Figure 12.8: The average (over 100 trials) position and velocity RMSE tracking
error for the three targets as a function of time.

12.7. Conclusion

New capabilities in modern multi-mode radars enable techniques to optimize

waveform selection for multi-target detection, tracking, and classification. This

chapter presented a rigorous model-based mathematical approach to fully adap-

tive radar resource management. The approach has two main components,

which are based on the perception-action cycle of cognition. First, the percep-

tual processor constructs an probabilistic estimate of the state of the surveil-

lance region. Next, the executive processor uses this estimate to determine the

sensing actions expected to yield the most utility. In this chapter, we charac-

terized utility using an information-theoretic measure, the MI.
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Figure 12.9: The average (over 100 trials) posterior probability in the correct
class for the identification task.

Our model problem included multiple tracking and classification tasks, a

bank of variable-length and variable-utility waveforms with a fixed time budget.

Our technique selected the collection of waveforms to transmit during a radar

frame subject to the total time constraint. Our techniques were illustrated

with a multi-target simulation using collected aircraft trajectories and first-

principles models of radar waveform utility.

Recent trends in cognitive radar include using data-driven and learning-

based methods in place of or in conjunction with model-based methods. Future

work might include comparison to these emerging techniques..
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