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Overview of Talk

• We present a method of tracking multiple targets based on recursive 
estimation of their Joint Multitarget Probability Density (JMPD)estimation of their Joint Multitarget Probability Density (JMPD).

• We give a grid-free implementation of the JMPD based on particle 
filtering techniques g q

– We detail adaptive sampling schemes that exploit the multitarget nature 
of the problem.

– We show the computational tractability PF provides

• We detail the inherent permutation symmetry associated with JMPD 
(related to measurement to track association) and show how this 
symmetry manifests itself in the particle filter implementation as 
partition swapping.p pp g



The Joint Multitarget
Probability Density (JMPD)y y ( )

• The state of an individual target is modeled by x, e.g.

• We are interested in tracking multiple targets so the state vector of the

']   [ yyxx &&=x

• We are interested in tracking multiple targets, so the state vector of the 
system (where perhaps the number of targets T is unknown) is defined as

']...[ T1T21 xxxxX −=

• The central element that summarizes our knowledge of the system at time 
k is the joint multitarget probability density (JMPD),

which is to be estimated based on a sequence of noisy measurements 
t k k ti t

( )kkp ZX |

taken over k time steps, 
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The Joint Multitarget
Probability Density (JMPD)y y ( )

• As examples, the sample space of p(Xk|Zk) contains

( )( )kp Z|{} The posterior probability density for no targets in the surveillance region

( )k
21p Zxx |, The posterior probability density for two targets in states x1 and x2

Notice the permutation symmetry inherent in JMPD

• The target motion is modeled as Markov using a Kinematic prior

Notice the permutation symmetry inherent in JMPD

• The sensor output is modeled using
kk

)|( 1kkp −XX

• We allow for the target motion to be non-linear, the measurement to state

)|( kkp Xz

We allow for the target motion to be non linear, the measurement to state 
coupling to be non-linear, and that posterior density to be non-Gaussian.



The Joint Multitarget
Probability Density (JMPD), cont’d

• In principle, time evolution of the posterior can be computed via a two-
step recursion, prediction and update:step recursion, prediction and update:

Prediction (generating the Kinematic prior)

( ) ( ) ( ) 1k1k1k1kk1kk dppp −−−−− ∫= XZXXXZX |||

Update (Bayes’ rule to Incorporate Measurements)
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• In our general setting of non-linear target kinematics, non-linear 

( ) ( ) ( ) k1kkkk1kk dppp XZXXzZz −− ∫= |||  where

measurements and non-Gaussian densities, an analytical solution for 
these recursions does not exist.



Particle Filter 
Implementation of JMPDp

• One method of solving the prediction and update equations is to discretize 
the density on a fixed grid and solve using finite difference methods.the density on a fixed grid and solve using finite difference methods.

• A more natural solution strategy which eliminates the need for 
discretization and for a fixed grid is to use the Monte Carlo method known 
as particle filtering. 

• Let the Joint Multitarget Probability Density (JMPD)

be approximated by N weighted samples (particles) as

∞==− ...        ),|()|,,...,( 1Tpp T1T21 ZXZxxxx

N

where a particle is given by

∑
=
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N

1p
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Particle Filter 
Implementation of JMPDp

• Using the definition of a particle just given,
']...[ T1T21 XXXXX =

• Each Xp,i in the particle Xp is the state vector of a particular target, and will 
be called a partition of the state vector.

,,,, ]...[ Tp1Tp2p1pp XXXXX −

• Each of the particles Xp is a sample drawn from the JMPD p(Xk|Zk)

– Therefore, a particle may have 0, 1, … ∞ partitions, each partition 
corresponding to a different targetcorresponding to a different target.

– The number of partitions in a particle is that particles estimate of the number 
of targets in the surveillance region.

• We want to generate a set of samples (particles) that approximate the 
joint multitarget probability density p(Xk|Zk)joint multitarget probability density p(X |Z ).



Particle Filtering 101

• A particle filter is a sequential Monte Carlo method used to solve the prediction 
integral and update equation. 

• The key concept in a particle filter is that the posterior density function is• The key concept in a particle filter is that the posterior density function is 
represented by a set of random samples with associated weights.

• Particle Filtering can handle
– Non-linear measurement to state couplingNon linear measurement to state coupling
– Non-linear state evolution
– Non-Gaussian densities



PF 101, cont’d

• We denote each sample (particle) p as      and its weight            k
pX

k
pw

We then approximate the density 
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• Given this representation, evaluating the usual estimates is 
straightforward e g
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straightforward, e.g.
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PF 101 – Initialization 

• PF is then a method of evaluating the prediction and 
update integrals numerically. p g y

• To initialize, sample N particles from  p(X0|Z0):
N1pk =X
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PF 101 – Prediction
PF

• For each particle that is used to approximate the density at k-1,        , 
generate a sample

( )
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• In general, it is very difficult to sample from this density, so we sample 
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from an importance density 
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PF 101 – Importance Density

• Choice of importance density (proposal density) is of 
critical importance as the performance of the PF can becritical importance as the performance of the PF can be 
dramatically effected by q.

Th i ht b itt• The weights can be rewritten 
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• And in the case where

( )k1k
p

k
p

1kp q zXX ,| −
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PF 101 – Resampling 
PF

• With no adjustments, one finds that the variance of the wp’s can only increase (i.e. 
after a few iterations, all but 1 of the wp’s have near-zero weight).

• Therefore a resampling step is added
– From the set of N particles, resample (with replacement) a new set of particles based on 

wp. This way, only particles with high weights are retained.

• The PF with                                        and resampling at every time step is the 
‘standard’ PF and called SIR in the literature.

( ) )|(,| 1kkk1k
p

k pq −− ≡ XXzXX

True Density PF Approx. Resampled PF Approx.



How well does it work?
(Single Target Case)( g g )

• Particle Filtering allows us to easily incorporate
– Non-linear Measurement to State Coupling

Non linear State Evolution (Target Motion)– Non-linear State Evolution (Target Motion)
– Non-Gaussian Densities

• Let’s ignore all these benefits for a moment
• How does it compare to a Kalman Filter in the regime where a Kalman Filter is p g

applicable (and optimal)?
– Simulation: Linear motion, linear measurements, Gaussian pdf. A single target with 

state vector [x ẋ y ẏ]

PF versus KF - Single Target Performance
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Exploiting the Multitarget Nature of the 
Problem to Build Better Particle Proposals

Particles proposed 
in this region will be 

given low weight

Particles proposed 
in these regions will 
be given high weightg g

• Propose particles in regions of high likelihood
– Tailor proposal density so that only high-weight particles are proposed

Resampling becomes unnecessary if all particles are in high likelihood areas– Resampling becomes unnecessary if all particles are in high likelihood areas

• We focus here on exploiting the fact that this is a multi-target problem 
and that the partitions of a particle are tracking different targetsand that the partitions of a particle are tracking different targets



Multitarget Proposal Densities

• Recall that the posterior density is approximated by a set of 
N particlesNparts particles
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• And each particle Xp is partitioned as    
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Multitarget Proposal Densities

Kinematic

I thi t diti l th d f iIn this traditional method of proposing 
particles, each particle at time k-1
generates a new particle at time k via 
the kinematic (motion) model P(Xk|Xk-1)the kinematic (motion) model P(Xk|Xk 1)

Measurements are not used when 
proposing particlesproposing particles

Proposed 
Particle at time k

Particle 
at time k-1



Multitarget Proposal Densities

Coupled Partition
Particles at time k are built 

Independent Partition
Particles at time k are built 

partition-by-partition. For each of 
the Nparts samples in a partition, 
we propose M possible samples 

i th Ki ti i i ht

partition-by-partition. For each of 
the Nparts samples in a partition, 

we propose one new sample 
i th Ki ti i dvia the Kinematic prior, weight 

each using the measurements, 
and select one.

using the Kinematic prior and 
weight using the measurements. 
We then select with replacement 
N samples from this group

Proposals of 
partition 1 at time k

Proposals of 
partition 2 at time k

Nparts samples from this group.
Partition 1

Proposals for 
time k

Partition 2 

time k

Partition 1 
at time k-1

at time k-1 Samples at 
time k-1



When is the IP method Applicable?

• The JMPD is permutation symmetric, 
– If x1 and x2 are the states of two targets, the multitarget states X = 

[x1,x2] and X = [x2,x1] refer to the same event.
The particle filter manifestation of this permutation symmetry is– The particle filter manifestation of this permutation symmetry is 
partition swapping.

– This symmetry is directly related to the measurement-to-target 
association problem.

– The particle filter implementation of JMPD must recognize this 
symmetry and account for it particularly if sophisticated particlesymmetry and account for it, particularly if sophisticated particle 
proposal schemes are utilized.



Partition Swapping

• Consider 4 particles (denoted by “o”,”x”,”+” and “*”) that are each 
tracking two targets (Target A and Target B)
Each particle has two partitions color coded blue and red• Each particle has two partitions – color coded blue and red

• When proposing according to the Kinematic prior, partition swapping 
may occur when targets cross – this is completely acceptable.

Time 1 Time 2 Time 3

Each particle has an estimate 
of both target A and target B.

The ordering of target partitions in 
particle “x” is opposite of the others.

When targets “cross” partition 
swapping is possible.



Partition Swapping

• A particle contains an estimate of both the number of targets and their 
states, e.g. when target state is modeled [xi ẋi yi ẏi]T,  2-target 
particle may be

=X
1p,x
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0.00

• This symmetry manifests itself directly in the particles used to 
approximate the density. The two particles X1 and X2 represent the 
same event:same event:
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Partition Swapping

• Using the IP Method in scenarios where 
swapping has occurred is unacceptable

IP th t ti l titi i

Time 3

– IP assumes that a particular partition is 
associated with one target 

– e.g. IP assumes all of the red partitions 
are tracking the same target.g g

Time 4
• Using IP at Time 3 leads to some 

particles that have both partitions 
associated with the same target

Time 4

– To build a new particle, IP proposes a 
new partition 1 by sampling from the set 
*, o, +, x and a new partition 2 by 
sampling from the set *, o, +, x This particle (x) now has both partitionsp g

– This may lead to a particle which is 
constructed using x and o

This particle (x) now has both partitions 
tracking target B – i.e. it (incorrectly & 

artificially) contributes probability mass to 
the state “two targets at location B”



Partition Swapping, cont’d

• The CP Method does not mix particles – lineage is 
maintained.
– New particles will be proposed with the same ordering as particles 

from the previous time step.
– Permutation symmetry is respected and probability mass is notPermutation symmetry is respected and probability mass is not 

artificially transferred to incorrect states.

CP li bl i ll i• CP applicable in all scenarios.
– Significantly less efficient then IP method
– When IP appropriate, it should be used.

• IP applicable when targets are ‘well separated’ (acting 
independently) and the partitions are ordered identicallyindependently) and the partitions are ordered identically.



Reordering Partitions

• Assume now that the actual targets are well separated, but 
different particles have different orderingsg

=1X
A
B =2X

B
A

=3X
A
B

=4X
B
A

=5X
A
B …

• We call the [A B] particles “A-first” particles and the [B A] 
“B first” particlesB-first  particles.

• Resampling results in a new set of particles with different 
distribution of A first and B first particles.
– The only stable state is for 100% to be A-first of 100% to be B-first.
– In practice, resampling quickly moves the distribution to a stable 

state.



Reordering Partitions
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Multitarget Proposal Densities

• When targets are well separated (in the measurement space), each 
sample is associated with a particular target. IP is appropriate here.

• When targets become “close” samples commingle and measurements of 
one target may effect samples associated with other targets. IP is not 
appropriate.pp p

• Use Independent Partitions (IP) when targets are well separated and 
Coupled Partitions (CP) when they are not.



Adaptive Proposal Method Switching

When are partitions ‘well separated’?

D1D1

D2
D3

Use CP on these

Sample from partition i
closest to mean of partition jclosest to mean of partition j

Sample from 
partition j

farthest from mean 
of partition jof partition j

Mahalanobis Distance
)m(xΣ)'m(x 1

jijji
2

jir −−= −
,

Use IP on this



Multitarget Proposal Densities

• Simulation: Three targets moving on a grid. 
• Targets spend approximately 50% of the time ‘near’ each other (when only CP is 

i t ) d 50% f th ti ll t d ( h IP i i t )

Method Flops
Ki ti P i 6 32E 06

appropriate) and 50% of the time well separated (where IP is appropriate)
• Adaptive method achieves similar performance as CP at half the FLOPS.

Kinematic Prior 6.32E+06
Independent Partition 6.74E+06

Adapative CP/IP 5.48E+07
Coupled Partition 1.25E+08



How much Effort does the adaptive 
strategy save?

• We compare a PF using the Kinematic Prior with one using the adaptive strategy.
• Particle Filtering allows for

– Non-linear Measurement to State Coupling
– Non-linear State Evolution (Target Motion)
– Non-Gaussian Densities

• We ignore all these benefits for a momentg
• How well does the multi-target PF perform in comparison to a Kalman Filter in the regime 

where a Kalman Filter is applicable (and optimal)?
– Simulation: Linear motion, linear measurements, Gaussian pdf. 

Fi ( ll t d) t t ith t t t [  ẋ  ẏ]– Five (well separated) targets with state vectors [x ẋ y ẏ]

PF versus KF - Five Target Performance
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Is it Tractable? 10 Real Targets

• Vehicle Trajectories
10 Real targets culled from– 10 Real targets culled from 
the NTC Sensor Strike Track 
Files

• #433, #552 Cross
• #392, #2078 travel together 

sometimes
• #264, #953, #1462 travel 

together a lottogether a lot
• #102, #115, #125 added to 

bring the total to 10
– 1000 time steps, 1 second 

apart
– Vehicles are time & space 

shifted to be in the same 
region at the same timeregion at the same time



Is it Tractable? 10 Real Targets

• Sensor Simulation
– The usual quasi-GMTI 

simulation where sensor 
measures 10x1 grid cell 
and gets 10 returnsand gets 10 returns

– The sensor grid is 50 cells 
x 50 cells. Each cell is 
100m x 100m.

– SNR = 12
• JMPD - Particle Filter

– Nparts = 500p
– Fully adaptive switching 

between CP and IP based 
on sample distance

Runtime ~ 1 Hour on Off the shelf Linux Box
1/3 of “real time”



Conclusion

• We’ve presented a method of tracking multiple targets based on 
recursive estimation of their Joint Multitarget Probability Density ecu s e est at o o t e Jo t u t ta get obab ty e s ty
(JMPD).

• Computational tractability is provided by Particle Filter-based 
implementation.

– Adaptive sampling schemes exploit multitarget nature of the problem.

Permutation symmetry manifests itself as partition swapping– Permutation symmetry manifests itself as partition swapping

• Natural framework to do sensor management where the JMPD is used to 
compute the area of maximal expected information gain.


